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Supervisor’s Foreword

Atmospheric models rely on turbulence parametrizations to represent the effect of
unresolved motions on resolved properties of the planetary boundary layer.
According to observations, common parametrizations fail to reproduce the correct
effect in conditions of strongly stable stratification, when turbulence collapses and
becomes intermittent in space and time. This problem has hampered the advance of
our understanding of the planetary boundary layer for decades. In this book,
Cedrick Ansorge demonstrates that we can eliminate this problem by simulating
turbulence directly, without turbulence parametrizations, which allows him to
investigate systematically, for the first time, key properties in conditions ranging
from weak to strong stratification.

Direct numerical simulation of the planetary boundary layer has become feasible
only recently with the advent of massively parallel supercomputers. Besides the
well-established measurement-driven and conceptual approaches, direct numerical
simulation opens a new avenue to study the planetary boundary layer. Direct
numerical simulation removes the uncertainty of turbulence parametrizations; it
does not use any turbulence parametrization, which turns out to be of critical
importance in conditions of strongly stable stratification. But direct numerical
simulation alone is no guarantee to advance physical understanding—direct
numerical simulation serves this purpose only in combination with well-defined,
physically sounded physical models that allow experiments in controlled condi-
tions. Cedrick Ansorge employs a stably stratified Ekman layer as a physical model
of the stable boundary layer, which he demonstrates to successfully reproduce the
three stratification regimes observed in nature: weakly, intermediately and strongly
stratified.

By means of this novel technique, the work presented in this book provides new
answers to long-standing questions. For example, it shows that both turbulence
collapse and the decoupling between the surface and the outer layer, need not be an
on–off process in time but can rather occur intermittently in space without the need
of external triggers, such as surface heterogeneity. It suffices that wave-like,
large-scale structures (with a size of several boundary-layer depths) have enough
space and time to develop. This result helps to explain the difficulty to obtain spatial
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intermittency in simulations, because we need to retain these large scales and,
simultaneously, resolve the small-scale turbulence inside the turbulence regions.
Another important question addressed in this book is how this intermittency affects
conventional statistics and turbulence parametrizations. A new conditioning method
is developed to partition the flow into turbulent and non-turbulent regions in the
vicinity of the wall. Systematic application of this conditioning method shows that
turbulence properties inside the turbulent regions in the weakly and intermediately
stratified cases are similar to turbulence properties in the neutrally stratified case.
The order-of-one changes observed in the conventional statistics as stratification
increases are mainly caused by the change of the volume fraction occupied by the
turbulent regions.

To conclude, this work exemplifies how process-level studies that combine
physical set-ups of reduced complexity with direct numerical simulations can yield
new insight into relevant atmospheric phenomena. The numerical methods and
physical set-up of stratified Ekman flows are presented in great detail, but this work
also translates results from this simplified set-up into new physical understanding
of the planetary boundary layer. Hence, the research presented in this book is an
excellent example of how new computational capabilities are opening new very
promising avenues in atmospheric research. As Cedrick’s advisor, I enjoyed
learning with him about the intricacies of stably stratified turbulence in the plan-
etary boundary layer, and I congratulate him for an outstanding work. I hope this
book inspires other scientists to also exploit these new computational capabilities in
the study of geophysical turbulence.

Hamburg, Germany Juan Pedro Mellado
July 2016
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Chapter 1
Introduction

The planetary boundary layer (PBL) is the bottom layer of the troposphere, i.e. that
part in contact with the underlying land or ocean surface. Not only is the PBL the
atmosphere’s part which humans are primarily exposed to, but also does it govern the
exchange of energy, momentum and humidity between the solid earth and the free
atmosphere, the troposphere’s part located immediately above the PBL. While the
upper endof thePBLcanbe defined in numerousways (on the earth, it ranges between
some tens of meters and few kilometers), its lower limit is the surface itself. There,
velocity and temperature of air need to match that of the underlying medium—be it
an immovable wall, water or floating ice. At the upper end, the velocity is set by the
wind and temperature in the free atmosphere inducing gradients in both the velocity
and temperature across the PBL. Due to the huge vertical extent of the boundary layer
and the low viscosity of air, even small vertical variations in the velocity deem the
flowof air in the PBL turbulentwhich intensifies the vertical exchange ofmomentum,
mass and energy by orders of magnitude.

Vertical gradients in temperature are mostly a consequence of differential heating
or radiative processes, and in the absence of humidity and advection, they are caused
by heating or cooling at the surface. Temperature and density variations are linked
through the equation of state for air as an ideal gas. Depending on their sign, density
variations may enhance or damp turbulence in the PBL, whose characteristics cru-
cially depend on its density stratification. When the surface is relatively cooler than
the air in the free atmosphere, density perturbations are damped: the density strat-
ification is stable. The PBL under the impact of stable density stratification (SBL)
is the object of research in this work, where fundamental aspects of wall-bounded
stably-stratified turbulence are addressed, and their implications for the SBL are laid
out.

If the surface cools sufficiently, turbulence is not only damped, but sometimes
observed to cease partially or even entirely (Schlichting 1935; van de Wiel et al.
2012). The cessation of turbulence under strong stratification is often accompanied

© Springer International Publishing AG 2017
C. Ansorge, Analyses of Turbulence in the Neutrally and Stably
Stratified Planetary Boundary Layer, Springer Theses,
DOI 10.1007/978-3-319-45044-5_1

3



4 1 Introduction

by the occurrence of laminar patches even close to the surface, a phenomenon called
global intermittency (Mahrt 1999). This particular mode of turbulence under strong
stratification and the associated decoupling of the PBL from the surface impose
challenges for mixing formulations in general circulation models used for numerical
weather prediction and climate projections. Enhanced mixing formulations need
often to be used in the mixing parameterizations for boundary layers of general
circulationmodels to prevent a decoupling of the atmosphere from the surface (van de
Wiel et al. 2012). Being heuristically formulated and tuned for the performance of
general circulationmodels, these enhancedmixing formulations lack a physical basis
and cause warm biases at the surface under very cold conditions (Tjernstrom et al.
2005). A better understanding of the underlying dynamics and physical processes,
especially in the very stable limit, could hence contribute to alleviate and ultimately
overcome these problems of mixing formulations under stable stratification (Mahrt
1999). This work embarks on a new tool in the context of the SBL, namely the direct
numerical simulation (DNS) of turbulent flow, to re-establish an old perspective—
that of fundamental fluid mechanics. Links between the extensive bodies of work
devoted to stably stratified fluids and the SBL are established and exploited to gain
new insight into the dynamics of the SBL.

1.1 Turbulence Regimes

Often, SBLs are classified into three regimes (Mahrt et al. 1998; Garg et al. 2000;
Sun et al. 2012, sketched in Fig. 1.1). First, in theweakly stable regime (black dashed
line), temperature behaves almost as a passive scalar, and the PBL’s structure is indis-
tinguishable from the neutral reference: weakness of the temperature gradients limits
the turbulent heat exchange. Consequently, if stratification is strengthened slightly,

Fig. 1.1 Idealized schematic of the turbulent heat flux in the surface layer under increasing static
stability; here, the turbulent heat flux is presented as a boundary-condition problem
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the turbulent heat flux increases monotonically as a function of the stratification. Sec-
ond, in the intermediately stable regime (blue line), the turbulent heat flux stagnates
if stratification is strengthened; an increased temperature gradient is compensated by
a decrease of vertical velocity fluctuations. Third, in the very stable regime (orange
line), stratification drastically alters the SBL’s turbulence structure to the degree that
the weakness of turbulent motion limits the vertical heat exchange: The turbulent
heat flux decreases with strengthening stratification. If strong enough, stratification
can—locally or globally—lead to the absence of turbulence.

Although the very stable regime can be commonly observed in the atmosphere
(Mahrt et al. 1998; Ha et al. 2007), there is still a lack of a general framework for
the SBL incorporating that very stable regime (van de Wiel and Moene 2012; Mahrt
2014).Monin–Obukhov similarity theory (MOST,Obukhov 1971) lacks the ability to
properly reproduce turbulent fluxes under weak-wind conditions (Ha et al. 2007), i.e.
in the very stable regime. From atmospheric observations, it is unclear if stratification
can become strong enough to suppress turbulent mixing entirely (Mauritsen and
Svensson 2007), and it proves problematic to locally classify a very stable PBL as
turbulent or non-turbulent. If turbulence is treated as an on–off process, a runaway
cooling at the surface is often seen in PBL models and large-eddy simulations(LES)
applied under very stable conditions (van de Wiel et al. 2012; Huang et al. 2013;
Jiménez and Cuxart 2005).

1.2 Global Intermittency

Awell-accepted hypothesis is that the cessation of turbulence is not an on–off process
but rather a complex transition beginning with global intermittency, the localized
absence of turbulence in an otherwise turbulent boundary layer. There exists a well-
developed conceptual framework to ascertain whether a laminar flow exposed to a
density stratification becomes turbulent: Taylor–Goldstein stability analysis and the
Miles–Howard theorem (Di Prima and Swinney 1981; Drazin and Howard 1966)
correctly describe both the relative stability of a particular flow and its path to turbu-
lence. A similar framework to determine whether a turbulent flow re-laminarizes is
still missing, and the analysis of turbulence in the very stable boundary layer remains
challenging (Steeneveld 2014; Mahrt 2014).

The coexistence of locally laminar and locally turbulent flow in a single configu-
ration is already mentioned by Corrsin (1943). He describes external intermittency,
i.e. the segregation of a turbulent jet into two disjoint sub-volumes with fully devel-
oped turbulence and nearly laminar flow. This concept was termed intermittency and
formally introduced by Townsend (1948) in an attempt to generalize Kolmogorov’s
theory on isotropic turbulence (Kolmogorov 1941, K41), and to apply K41 to a sta-
tistically inhomogeneous flow. Intermittency refers here to the concept of external
intermittency, not to be confused with internal intermittency (cf. Tsinober 2014).
Townsend (1948) postulates that regions of fully developed turbulence exist for a
sufficiently long period of time to allow for the establishment of local isotropy inside
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them. When the non-turbulent fraction of the turbulent flow is taken into account,
his experimental data agree better with the prediction of K41.

Using an advanced method to determine the intermittency factor in a boundary
layer (based on high-frequency velocity oscillations; cf. Townsend (1949)), Corrsin
and Kistler (1955) provide physical reasoning and experimental evidence for the
hypothesis that the interface between turbulent and non-turbulent motion is one
between rotational and irrotational flow. In particular, they show that the root mean
square (r.m.s.) of the vorticity varies by orders of magnitude across this interface.
Based on such a vorticity-thresholding, a work by Kovasznay et al. (1970) introduces
conditional sampling and averaging techniques to study separately the turbulent and
non-turbulent flow regions in the intermittent part of a boundary layer.

The aforementioned studies are concerned with the case where non-turbulent flow
exists aloft or around some region of turbulent motion. Another variant occurs when
stabilizing body forces act on a flow and cause the decay, cessation or absence of
turbulence. In stratified channels, re-laminarization was shown not to occur as an
on–off process in time but rather as a complex transition from a turbulent to a non-
turbulent state (Armenio andSarkar 2002; Flores andRiley 2011;García-Villalba and
del Àlamo 2011). When stratification increases gradually, the transition begins with
the localized absence of turbulent eddies in an otherwise turbulent flow. Brethouwer
et al. (2012) as well as Deusebio (2015) demonstrate a similar nature of transition
for several wall-bounded flows, including both channel and pipe flow, with different
stabilizing body forces. In Ekman flow stabilizing effects of both stratification and
rotation are present, and a similar transition occurs under strong stratification as
found independently in this work and by Deusebio et al. (2014).

To the author’s knowledge, occurrence of global intermittency in atmospheric
configurations has not yet reflected into an application of the conditioning methods
described above to study separately the turbulent and non-turbulent sub-volumes in
a rotating and stratified boundary layer. The challenge is twofold: First, small-scale
derivatives have to be measured with sufficient accuracy to determine a vorticity-
based intermittency factor γ (Kuznetsov et al. 1992). Despite advances in measure-
ment techniques, still approximative methods are commonly employed to determine
intermittency factors (Cava et al. 2012). Regarding numerical simulations, suffi-
ciently resolved data in space and time are made available as part of this work and
global intermittency is quantified here using direct numerical simulations of Ekman
flow. The second challenge is related to the occurrence of global intermittency close
to the wall. While a vorticity-based partitioning of the flow detects external inter-
mittency in the outer layer of neutrally stratified flows, there are problems with
global intermittency close to wall. There, large gradients in non-turbulent regions
may falsely indicate the existence of turbulence. To overcome this second challenge,
this work proposes an analysis of the flow combining the intermittency factor with a
high-pass filter operation.

A different problem is the origin of global intermittency. It has been shown from
observations globally intermittent turbulence can be triggered by a variety of external
disturbances including orographic obstacles (Acevedo and Fitzjarrald 2003), solitary
and internal gravity waves (Sun et al. 2004) and wind oscillations, such as nocturnal



1.2 Global Intermittency 7

low-level jets (Sun et al. 2012). Conceptual studies of the very stable boundary layer
(McNider et al. 1995; Derbyshire 1999; van de Wiel and Moene 2002, 2012) have
led to qualitative models of turbulence collapse and global intermittency. Global
intermittency was, however, not investigated, and it remains unclear whether global
intermittency can occur in a SBL without these external triggering mechanisms. In
this work, evidence is provided that global intermittency is a process intrinsic to the
SBL and does not necessarily rely on these triggering mechanisms as a precursor.

1.3 Approaches to Studying the Stable Boundary Layer

A qualitative understanding of strongly stable and globally intermittent turbulence
from observations has proven difficult. In particular, accurate flux measurements
are hard to obtain with standard methods, and various processes often interact as
outlined in the above Sect. 1.2: Under atmospheric conditions, the entire range of
scales, orographic complexity, interaction with the surface, and radiative processes
are always present and generally not under a researcher’s control. Thus, it is hard to
isolate the signal of a single process as is sometimes necessary for a basic physical
understanding. Ekman flow over a smooth wall—a much simplified configuration—
is chosen here as the physical configuration. This choice enables a systematic and
quantitative study of the intermediately and very stable regimes of turbulence in a
simplified and well-defined set-up (described in detail in Chap. 2).

While the study of the weakly stratified limit of simplified SBL configurations
is well accomplished by LES (Beare et al. 2006; Huang and Bou-Zeid 2013), the
study of very stable cases remains a challenge (Jiménez and Cuxart 2005; Saiki
et al. 2000). In particular, the treatment of quasi-laminar patches under very stable
conditions is problematicwithin the conceptual framework of LES.Hence, I consider
here DNS, which—in comparison to LES—is not subject to uncertainties of sub-
grid closures; DNS can deal with local re-laminarization of a flow as intrinsic to
its representation by the Navier–Stokes equations. Following the pioneering work
by Coleman et al. (1990), neutrally stratified Ekman flow has been subject to a
number of studies (Coleman 1999; Shingai and Kawamura 2004; Miyashita et al.
2006; Marlatt et al. 2010; Spalart et al. 2008, 2009). The stably stratified problem
was investigated by Coleman et al. (1992) and Shingai and Kawamura (2002), who
studied Ekman flow under weak to moderate stratification in rather small domains.
More recently, the small-domain set-up of Coleman et al. (1992) was investigated
for stronger stratification by Shah and Bou-Zeid (2014) who found turbulent bursts
in time.

Instead of studying the problem of Ekman flow in its full complexity, it is common
practice to use stratified channel flow as a surrogate for the stratified Ekman boundary
layer, which is possible due to the analogy between the surface layer of channel
flow and that of Ekman flow. In channel flow, oscillations on a period that is large
when compared with the eddy turn-over time, were observed; but no intermittency
was found at moderate Reynolds numbers (Nieuwstadt 2005). More recently, global

http://dx.doi.org/10.1007/978-3-319-45044-5_2
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intermittencywas simulated in channel flow, and itwas proven that too-small domains
lead to the formation of artificial flow regimes manifest for instance in the low-
frequency oscillation of global statistics (García-Villalba and del Àlamo 2011; Flores
and Riley 2011). Whereas the former use a fixed-temperature boundary condition,
the latter impose a constant buoyancy flux at the surface. Flores and Riley (2011)
observe large-scale intermittency linked to the collapse of turbulence. In contrast
to channel flows, Ekman flow has no symmetry in the spanwise direction, which is
known to cause some large-scale structures in the neutrally stratified limit (Shingai
and Kawamura 2004). Whether these structures affect the collapse of turbulence
remains unclear. When compared to an open boundary layer, it sticks out that—
as a consequence of the rotating reference frame—the Ekman boundary layer is not
growing infinitely despite being open at the top. Jiménez et al. (2009) found in a non-
rotating configuration that the outer flow of boundary layers and channel flows are
intrinsically different. Hence, Ekman flow may differ from channel flow as well—I
address here the question, How much does it so?

1.4 Research Proposition

The SBL still poses a challenge in terms of both its modelling and fundamental
understanding; problems are particularly pertinent where turbulence is globally inter-
mittent and assumptions underlying common turbulence closures break down. This
thesis, for the first time systematically, employs DNS, a widely-used tool to study
canonical problems in fluid mechanics (Moin and Mahesh 1998), to study stratified
Ekman flow. Particular emphasis is on very strong stability where other approaches
have problems and many open questions remain. As a simplified set-up, turbulent
Ekman flow over a smooth flat plate (introduced in Chap.2) is chosen, and this work
complements existing studies of stably stratified flows relevant to the atmospheric
boundary layer.

DNS heavily relies on modern approaches to computing: It requires the utiliza-
tion of highest-performance computers includingmassive parallelization of the algo-
rithms used to compute the flow. In part II, the computing aspect is discussed. A new
time-stepping scheme is implemented (Chap. 3), and efforts are undertaken as part
of this work to optimize an algorithm for the solution of the Navier–Stokes equa-
tions (Chap.4). The consistency of the algorithm and its convergence properties are
documented in Chap.5

Using DNS to study the SBL, problems in the limit of strong stratification are
evaded since the solution of the entire spectrum of turbulent motion keeps the set-up
free of a turbulence closure model. The goal here is to shed light on the mechanisms
of turbulence collapse under stable stratification, and to identify the role of global
intermittency in this process. The fundamental nature of this approach—it is based
on the governing equations of the flow only—will be shown throughout this work to
be a great advantage when the flow is globally or externally intermittent. Part III is
devoted to the physical aspects and commences with a description of the neutrally

http://dx.doi.org/10.1007/978-3-319-45044-5_2
http://dx.doi.org/10.1007/978-3-319-45044-5_3
http://dx.doi.org/10.1007/978-3-319-45044-5_4
http://dx.doi.org/10.1007/978-3-319-45044-5_5
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stratified reference state in Chap. 6. In the subsequent chapters on the stably stratified
flow, the utility of this approach is demonstrated, and the turbulent flow is simulated
successfully in all regimes of static stability. A new method to overcome the above-
mentioned problems in detecting global intermittency in the turbulent flow at large
stability is developed in Chap.8. The partitioning of the flow introduced there implies
new avenues in understanding and parameterizing turbulence under very strong sta-
bility as shown in Chaps. 7–10.
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Chapter 2
Problem Formulation and Tools

2.1 The Governing Equations

The flow of a Newtonian fluid, such as gaseous air, is governed by the Navier–
Stokes equations to within sufficient accuracy (Batchelor 1967). These equations are
widely accepted as the appropriate vehicle to study laminar and turbulent flows. In a
rotating reference frame, a fictitious force, the Coriolis Force, appears to act on the
fluid (Chemin et al. 2006). When combined with the conservation laws of energy
and mass and an equation of state of the fluid, these equations form a closed coupled
system of partial differential equations for three velocity components (ui )i=1,2,3, the
pressure p, density ρ and temperature T (see for instance Batchelor 1967)

dρui
dt

= − ∂p

∂xi
+ ∂

∂x j

[
ρν

(
τi j − 1

3

∂uk
∂xk

δi, j

)]
+ 2ρεi jku j�k − ρgδi,3
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ρ

dρ
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p

ρ
= RdT . (2.1d)

Here, ν is the kinematic viscosity of air, and νH the diffusivity of heat, (cp − Rd) =
cv is the volumetric heat capacity of air, and

τi j ≡ 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
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is the rate-of-strain tensor. The coordinate directions i = 1, 2, 3 are denoted as Ox,
Oy and Oz, and Oz points in the vertical (wall-normal) direction. The velocity com-
ponents are u = u1, v = u2, w = u3.

Hydrostatic balance. In a geophysical context, it is common to use the concept of
hydrostatic balance. Using the hydrostatic balance as a background state, density is
decomposed into a reference value ρ0(z) and a fluctuation ρ ′ such that ρ(x, y, z, t) =
ρ0 + ρ ′(x, y, z, t). The density and pressure terms on the right-hand side (RHS) of
Eq. (2.1a) for i = 3 can be written as

−
(

∂p

∂z
+ ρg

)
= −

(
∂ph
∂z

+ ρ0g + ∂p′

∂z
+ ρ ′g

)
= −ρ

(
1

ρ

∂p′

∂z
+ ρ ′

ρ
g

)
(2.2)

with
∂ph
∂z

= −ρ0g,

where ph is the hydrostatic pressure.
Potential temperature. The potential temperature θ is defined as

θ := T

(
pre f
p

)Rd/cp

(2.3)

with pre f := 105 Pa. The vertical gradient of θ , ∂θ/∂z, is a measure of stratification,
and in a non-buoyant, i.e. neutrally stratified, atmosphere it is ∂θ/∂z = 0. θ is a
measure of the entropy s = cp ln θ , and when the energy Eq. (2.1b) is expressed in
terms of θ , the changes of temperature due to density fluctuations ∂t (ρRdT ) = ∂t (p)
are absorbed in the potential temperature.

Divergence-free constraint: incompressibility. A total change of pressure can be
expressed in terms of potential temperature and density as

dp

dt
= ∂p

∂θ

∣∣∣∣
ρ

dθ

dt
+ ∂p

∂ρ

∣∣∣∣
θ

dρ

dt
, (2.4)

with
√

(∂p/∂ρ)|θ =: c, the speed of sound. Hence, total changes in density ρ are
expressed as

dρ

dt
= 1

c2

(
dp

dt
− ∂p

∂θ

∣∣∣∣
p

dθ

dt

)
. (2.5)

If the speed of sound, c, is large in comparison to any velocity in the flow, changes
in density become very small. The neglect of the first term is the incompressibility
assumption; it implies the limit c → ∞ and thus infinitely fast propagation of sound
waves. Perturbations in the pressure field propagate at infinite speed. This instan-
taneous communication of pressure perturbations is manifest in a Helmholtz-type
equation for the pressure that results if the divergence of Eq. (2.1a) is forced to zero
(Sect. 3.1).

http://dx.doi.org/10.1007/978-3-319-45044-5_3
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The neglect of the second term in Eq. (2.5) is related to density changes in response
to internal dissipative heating and density changes in response to molecular conduc-
tion of heat (Batchelor (1967), p.170) which are known to be small under typical
atmospheric conditions. Together with the neglect of the first term on the RHS of
Eq. (2.5), this implies dρ/dt = 0 which together with mass conservation requires
that the momentum field has zero divergence, i.e. ∇ · u = 0.

In terms of non-dimensional parameters, all terms inEq. (2.5) scalewith the square
of the Mach number

Ma = U0(
1/(1 − Rd/cp)RdT0

)1/2 = U0

c
. (2.6)

For consistency one also needs to neglect the anti-symmetric part of the second
term on the RHS of Eq. (2.1b), the dissipative heating itself, which is also of the order
of Ma2. A consequence of the divergence-free constraint, is that d ln p � d ln θ ,
from which ρ ′/ρ � −θ ′/θ follows.

Boussinesq approximation. If ρ ′/ρ � 1, one can approximate ρ = ρ0 in the right-
hand side of Eq. (2.2). This neglect of density variations is referred to as Boussinesq
approximation (Cushman-Roisin and Beckers 2011, p. 83). Introducing the modified
pressure π := p/ρ0 along with a reference temperature θ0 that corresponds to the
reference density b0, Eq. (2.2) becomes

− 1

ρ0

(
∂p

∂z
+ ρg

)
= −∂π

∂z
+ θ ′

θ0
g = −∂π

∂z
+ b, with b := g

θ ′

θ0
(2.7)

where b is the buoyancy and θ0 = const. is the non-buoyant hydrostatic background
potential temperature profile.

Equation2.7 can be plugged into Eq.2.1 when the latter is divided by ρ. In all
other terms, the approximation ρ = ρ0 is applied and density effects are covered by
the buoyancy b—the remainder of the gravity term—only.

f-plane approximation, geostrophic balance. On a rotating sphere the local vector

of angular rotation depends on the latitude φ as �(φ) =
∣∣∣ ��∣∣∣ (0, cosφ, sin φ), which

makes the Coriolis acceleration

− 2 �� × �v = −2| ��|
⎛
⎝w cosφ − v sin φ

u sin φ

u cosφ

⎞
⎠ . (2.8)

At the poles the vector of rotation� simplifies to� = (0, 0, |�|)T = (0, 0, f/2)T

with f := 2|�| sin φ the Coriolis parameter, and one may locally consider a hori-
zontal plate rotating around the vertical axis. Hence the name f-plane approxima-
tion. Away from the poles this f-plane approximation is a further simplification of
Eq. (2.1a), which is justified in particular at high latitudes and for small vertical
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velocities. As a consequence of the f-plane approximation, the latitude φ drops out
as a parameter of the problem.

If a shear-free, homogeneous flow on an f-plane, is exposed to a pressure gradient,
the pressure gradient force may only be balanced by the Coriolis force. This balance
is the geostrophic balance:

Gi = f εi3k
∂�

∂xk
, (2.9)

where G = Gi êi is the geostrophic wind vector and ∂�/∂xk is the mean pres-
sure gradient along Oxk . Far away from the wall, this geostrophic balance of the
pressure gradient with the mean flow along isobars is a good approximation, and
turbulence as well as viscous effects do not play an important role. The physical
problem—besides the latitude—also depends on the direction along which the
pressure gradient is imposed. Without loss of generality, the coordinate system is
aligned such that ê1 = G/|G| and I refer to the direction of G as streamwise and to
that of ê2 = ( �� × G)/| �� × G| as spanwise direction.
Simplified equations and boundary conditions. Using the simplifications dis-
cussed above, Eqs. (2.1a)–(2.1c) become

∂ui
∂t

= − u j
∂ui
∂x j

− ∂π

∂xi
+ ν

∂2ui
∂x2j

+ f εi j3u j + bδi,3 (2.10a)

∂b

∂t
= − u j

∂b

∂x j
+ νH

∂2b

∂x2j
(2.10b)

∂ui
∂xi

= 0, (2.10c)

where the variation of themolecular diffusivities ν and νH as a function of the state of
the air is ignored. The set of partial differential Equations (2.10a)–(2.10c) is closed,
and it describes the time-evolution of the velocity, pressure and buoyancy fields given
initial and boundary conditions.

At the lower boundary, a no-slip and no-penetration condition is imposed mim-
icking a solid wall. At the upper boundary, a free-slip and no-penetration condition
is used. This supposes that the upper end of the domain is part of the free stream and
as such in geostrophic balance. In the horizontal direction, the domain is doubly-
periodic. It needs to be large enough to capture the largest structure relevant for
turbulence. Stratification may be imposed via a Dirichlet (fixed-value), Neumann
(fixed-gradient) or Robin (mixed) boundary condition. In this work, only Dirichlet
boundary conditions are considered.
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2.2 Non-dimensionalization and Parameter Space

If a fluid mechanical problem is rescaled, the law of hydrodynamic similarity may be
exploited to apply the Buckingham-� theorem. This allows to draw definite conclu-
sions on classes of flows rather than a single configuration. Therefore it is necessary
to identify relevant parameters and group them into non-dimensional combinations.

2.2.1 The Neutrally Stratified Regime

Under neutral stratification, the Ekman-flow dynamics are governed by the quantities
{G, f , ν, νH } (we include here the diffusivity of a passive tracer for completeness)
once turbulence has fully developed and the flowfields have sufficiently de-correlated
from the initial conditions. Following previous studies (Coleman et al. 1992; Spalart
et al. 2008, 2009; Marlatt et al. 2010), the Coriolis parameter f is replaced by the
laminar Ekman-layer depth D ≡ √

2ν f −1 in the dimensional analysis. This yields
the Reynolds and Prandtl numbers

Re = GD

ν
, Pr = ν

νH
, (2.11)

where it is noted that Re ∝ ν−1/2. Here, the Prandtl number is fixed as Pr ≡ 1. In
contrast to the boundary-layer flow over a flat plate, where the shear layer deepens
continuously and no steady state is reached, Ekman flow acquires a balance between
the production of turbulence due to shear and the suppression of turbulence due
to rotation. The neutrally stratified flow has hence a steady-state solution in terms
of a statistical description of turbulence which is a function of Re only. This also
implies that the definition of an initial condition from a mathematical perspective is
irrelevant if the flow is linearly unstable, which is the case for Ekman flow beyond
Re = Recrit = 115 (Lilly 1966). For Re > Recrit , the flow transitions to its turbulent
statistical equilibrium state.

2.2.2 Uniqueness of the Solution

Given initial and boundary conditions, onemight ask the question, Is this equilibrium
state deterministic? Despite recent advance (Otelbaev 2014), the general unique
solubility of the Navier–Stokes equations still withstands a widely accepted rigid
mathematical proof (Gowers 2000; Ladyzhenskaya 2003). So, from a fundamental
point of view, it is not clear if there is a single such equilibrium state—multiple
such states might exist, and infinitesimal perturbations in the initial condition might
determine to which statistical equilibrium the flow transitions. While, in theory,
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non-uniqueness of the solution might allow for the existence of multiple relevant
equilibria, this is practically not realizable. Not only would additional equilibria be
irrelevant for physical realizations of the problem: no more than one equilibrium
has been observed both numerically and in laboratory experiment. But also would
the existence of two physically realizable equilibria contradict the Navier–Stokes
equation’s unique solubility for a finite time (Ladyzhenskaya 2003; Chemin et al.
2006). Hence, in the following it is assumed, there exists only one equilibrium.

If such an equilibrium exists, it is inevitably attained by the flow for Re > Recrit .
Once the flow is in its turbulent state, the laminar length scale D no longer describes
the flow appropriately. Instead, the boundary-layer depth scale δ ≡ u/ f is used,
where u is the friction velocity defined below.The following parameters characterize
the turbulent flow:

u2 = ν
∂
√〈u〉2 + 〈v〉2

∂z

∣∣∣∣∣
z=0

, δ = u/ f and Reτ = uδ

ν
. (2.12)

In contrast to channel flows, u in the Ekman layer cannot be known a priori but
only a posteriori, and u depends weakly on Re (Spalart 1989). Following common
practice, the flow is studied in terms of an inner layer (wheremolecular viscosity plays
an important role) and an outer layer (where turbulent viscosity plays an important
role). In the inner layer, i.e. also in the surface layer, the wall unit ν/u and the
friction velocity u are chosen for normalization; normalized quantities are denoted
by a superscript +. In the outer layer, quantities are normalized by u and δ, and
correspondingly normalized quantities are denoted by a superscript −. Because of
its physical meaning, the inertial period 2π f −1 is used as the outer reference time
scale instead of f −1.

2.2.3 Imposing Stratification: Initial and Boundary
Conditions

When a stratified flow is considered, in addition to the boundary conditions for the
flow and scalar, an initial condition for the active scalar is needed. For the velocity
fields, a turbulent initial condition is employed—depending on the case and question
either from an equilibrated neutrally stratified simulation or from a quasi-steady
stratified simulation.

Here, the problem is studied for a fixed surface buoyancy only; for a discussion
of the impact of flux boundary conditions and more complex set-ups, see Flores and
Riley (2011) and van de Wiel et al. (2012). The buoyancy difference between the
surface and the far field is B0 (cf. Coleman et al. 1992); this new parameter combines
into the Froude number Fr = G2/(B0D). Fr incorporates the laminar length scale
D loosing its relevance in turbulent flow. In the turbulent set-up, stratification is
expressed more appropriately in terms of the global bulk Richardson number,
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RiB := B0δneutral

G2
. (2.13a)

Due to the choice of a Dirichlet boundary condition,

b(x, y, z = 0, t > 0) = 0 and b(x, y, z = ztop, t > 0) = B0, (2.13b)

RiB is an inviscid external parameter, and used in the following to classify simulations
according to their stratification.

TheObukhov length LO (Obukhov 1971) is an alternativemeasure to characterize
stratification. In particular, the ratio of the Obukhov length LO with the wall unit
ν/u,

L+
O = LO

u

ν
:=

(
−θ0

g

u3
θw|z=z0

)+
=

(
u3
ub

)+
with ub = ν

∂〈b〉
∂z

∣∣∣∣
z=0

(2.13c)

determines the character of turbulence (Flores and Riley 2011): L+
O measures the

biggest possible scale separation in a stratified flow (Flores and Riley 2011), and is
therefore an appropriate Reynolds number in a stratified environment. Interestingly,
the critical value of L+

0 � 100 estimated by Flores and Riley is very similar to the
critical Reynolds number for linear instability of Ekman flow (Recrit = 115). Recent
work (Deusebio 2015) indeed suggests this threshold is almost universal.

This is consistent with the research on minimal flow units suggesting that the
near-wall cycle of turbulence can only be sustained for scales larger than 100 wall
units (Jiménez and Pinelli 1999).

Over a smooth wall, this parameter can also be interpreted in terms of the gradient
Richardson number

RiG := ∂z B|z=0

(∂zU )2|z=0
= ν

b

u3
= (

L+
O

)−1
, (2.13d)

where Pr = 1, as defined above, is used. Therefore, L+
O contains information about

the stability character in the near-wall region. Large L+
O implies a small RiG and

hence turbulence can develop in the lower part of the SBL. In Ekman flow over
a surface at fixed temperature, both LO and RiG are not external parameters to
the problem, but they are time-dependent measures describing the evolution of the
system. For that reason RiB is used as control parameter.

Besides the strength of stratification, the profile of stratification imposed as the
initial condition has a significant impact during the initial phase: the initial profile
determines the duration of the initial transient. The focus here is on the cases where
almost the entire stratification concentrates initially within the viscous sub-layer of
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the flow,mimicking a sudden cooling of the surface. FollowingColeman et al. (1992),
the initial condition for the buoyancy is

b(x, y, z, t0) = 1 − erf

[
z/D

2a

]
= 1 − erf

[
z

2a

(
δneutral√
2Reτ

)−1
]

, (2.14)

where b is the buoyancy normalized with the surface boundary value B0, Reτ is
defined in Eq. (2.12) and a = 0.15 is the non-dimensional thickness. Also, δneutral
refers to the value of the neutrally stratified case used for the initialization of the
velocity fields.

This particular choice of the initial condition through the concentration of the
entire buoyancy gradient into the surface layer bears the dilemma that stratification
may be very strong close to the surface even if RiB , which is expected to control
the long-time evolution of the system, is sub-critical. In that case, the initial tran-
sient can contain periods of time wherein the turbulence is shut off through a very
efficient cut of production in the buffer layer; this initial phase is most appropriately
characterized by RiG . RiG is indicative of the respective stratification in the produc-
tion region (surface layer) and more appropriate to study the initial transient when
a stratification is imposed in an initially very thin layer at the surface. Given the
large spread between the two parameters RiB and RiG (RiG(t = 0)/RiB = G2/u2),
the range of stratifications over which this might occur is potentially large. There-
after molecular mixing slowly diminishes the buoyancy gradient until the flow may
become unstable again. Although the focus of this work is the long-time evolution
of the system, the ratios of these transition time scales to the integral time scale of
turbulence, 2π f −1 (or f −1 = δ/u, see above), are relevant in the context of the
atmosphere. For instance, they determine whether a fully-developed boundary layer
has time to reach its quasi-steady state over the course of a night (or other externally
set time scales). In Sect. 7.1, I show that the key findings are, at least in the range
considered here, independent of the choice of initial condition.

2.2.4 Parameter Space of the Non-dimensionalized Problem

The problem as formulated hereunto depends only on two parameters, a Reynolds
and a Richardson number. The Reynolds number measures the separation of scales
between the large scales (in this case, these are the scales forcing the system) and
the smallest scales contributing to the spectrum of turbulent motion. Some relevant
aspects of the flow are commonly expected to scale self-similarly with respect to the
Reynolds number—at least in the limit of the (high) Reynolds numbers typical for
the PBL. The Richardson number represents stratification, and it is well known that
turbulent flow reacts sensitively to changes in the stratification from theoretical con-
siderations, observations and numerical studies (Richardson 1920; Fernando 1991;
Peltier and Caulfield 2003; Ivey et al. 2008).

http://dx.doi.org/10.1007/978-3-319-45044-5_7
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Fig. 2.1 Schematic of the problem’s parameter space as introduced in the text

Previous work suggests to partition the problem’s parameter space as sketched in
Fig. 2.1.Under neutral stratification the only parameter of the problem is theReynolds
number, and once in the fully turbulent regime, low-order statistics are well-known
to be to a certain degree independent of the Reynolds number Re (Moin and Mahesh
1998). If stratification is increased at fixed Re, the regimes of weak, intermediate and
strong stratification are coveredbefore theflow laminarizes.While there is nodoubt as
to the existence of those regimes, the thresholds and dynamics of transitions and their
nature are under debate (Tritton and Davies 1981; Manneville 2008); in particular no
conclusive statements have been made on the limit and dynamics of stratification for
the re-laminarization of a turbulent flow and the associated phenomenon of global
intermittency, where laminar patches exist in an otherwise turbulent flow.

2.3 Analysis Tools

The direct numerical simulation of a turbulent flow consists of the solution of
Eqs. 2.1a–2.1d, and it may be interpreted as a merely technical problem or numerical
exercise (Chaps. 3–5). Once these solutions are available, they may be studied to
gain physical insight (Chaps. 6–8). Commonly, this is not achieved via the analysis
of a single datum (even though this constitutes a reasonable option for some kind of
analyses) but rather by means of analysis methods that have solid theoretical foun-
dations and are widely applied. Besides the very common approach of a spectral
decomposition (Finnegan and Kaimal 1994) and the analysis of probability density
functions, conditional sampling and virtual towermeasurements are used in thiswork
and described in the following sections.

http://dx.doi.org/10.1007/978-3-319-45044-5_3
http://dx.doi.org/10.1007/978-3-319-45044-5_5
http://dx.doi.org/10.1007/978-3-319-45044-5_6
http://dx.doi.org/10.1007/978-3-319-45044-5_8
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2.3.1 Conditional Sampling

Free turbulent flows are ubiquitous in engineering, and they are even more so in
geophysical applications of turbulence research. The possible coexistence of non-
turbulent and turbulent fluid in a statistically homogeneous manifold of a turbulent
flow domain was already recognized by Corrsin (1943, cf. Chap. 1 of the present
work). Phenomena at the turbulent–non-turbulent interface—namely external inter-
mittency and entrainment—play a pivotal role in the development of boundary layers
with a free stream. The successful (experimental) distinction between turbulent and
non-turbulent fluid based on the instantaneous vorticity magnitude allows to separate
the flow domain into a turbulent and non-turbulent part (Corrsin and Kistler 1955). If
turbulent processes or quantities—such as the turbulent diffusion and the associated
turbulent diffusivity—are of interest, one may argue that a consideration of statistics
based on the turbulent or non-turbulent subsets alone is useful. A sample is then
based on a subset of the domain that suffices a particular condition—hence the term
conditional sampling for this procedure that is widely used in the experimental study
of turbulent flows (Antonia 1981). The capability to sample a flow conditionally
allows a whole new set of analysis methods embraced under the term of conditional
statistics; these statistics may be averages or higher moments, but they may also be
more complex such as probability density functions or wavelets.

With respect to atmospheric boundary layers, conditional sampling so far has
almost exclusively been used in the context of field measurements in the surface
layer under convective conditions (Singh Khalsa 1980; Singh Khalsa and Greenhut
1985; Katul et al. 1994). A weakly intermittent nocturnal surface inversion layer and
a Bora flow have been investigated using conditional statistics with respect to the
eigen-structure of micro-fronts by Mahrt and Frank (1988).

2.3.2 Temporally Resolved Probes

While the details of an individual realization of a turbulent flow are often not of
particular interest when investigating the turbulent dynamics, also the vast number
of degrees of freedom in a DNS prohibits to analyze all the data that potentially
become available throughout a simulation. For technical reasons, namely the restart
of a simulation, fully-resolved three-dimensional fields are saved at fixed iteration
points, but otherwise only a predefined set of statistics is extracted and saved. Hence,
for an a posteriori analysis there are data at very high spatial but rather coarse temporal
resolution. While this is generally sufficient for the study of the bulk turbulence in
a statistical sense, i.e. based on ensemble averages, investigation of some processes
at high temporal frequency demands higher temporal resolution. Also, observational
data in the atmosphere are mostly obtained from fixed-in-space probes (towers) at
a high temporal resolution, and generally very coarse spatial resolution—if at all

http://dx.doi.org/10.1007/978-3-319-45044-5_1
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there is more than one tower available for the analysis of a flow within the spatial
separation relevant to turbulent processes.

During this work, I implemented a tower-sampling at high temporal resolution
at selected locations. In the largest set-up (at Re = 1000 with a horizontal box size
Lxy/δ � 20), the flow is sampled at the full temporal resolution, i.e. at every iteration
at 32 × 32 locations in each horizontal plane. This corresponds to a spacing of
(0.64δ × 0.64δ) or (1.01δ95 × 1.01δ95) (cf. Chap. 6). This spatial separation allows
to consider each tower as an approximately independent realizations of the flow.

Let xi (t, z) the instantaneous realization of a flow realization at time t , height z
and location ri . Let further (tn)n∈N the discrete series of times through which the
flow is integrated, and (ri )i∈{1...1024}⊂N. Further, let

xi (z)
T := 1

n(T )

n(T )∑
n=1

xi (tn, z) (2.15)

with n(T ) such that tn(T )−1 < T ≤ tn(T ),

that is, xi (z)
T
is the average of the tower at ri over a period of time of length T .

Ergodicity of the stationary, four-dimensional turbulent field implies

〈xi (t, z)〉 = lim
T→∞ xi (z)

T
. (2.16)

Moreover, in the limit of an infinite number of towers, it is 〈x(z)〉 = 〈xi (tn, z)〉.

2.4 Summary

In this chapter, the physical problem is formulated using the governing equations. The
Navier–Stokes equations in the Boussinesq limit are identified as the appropriate set
of equations to study the flow. These equations are introduced along some common
assumptions and simplifications, and their simplified version is subsequently non-
dimensionalized. The non-dimensional parameter space of the problem is introduced
and qualitatively characterized, and the main analysis methods are presented.
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Part II
Numerics



Chapter 3
Discretization

DNS of a turbulent flow requires a discretization of the governing Navier–Stokes
equations in both time and space. The Navier–Stokes equations are a set of partial
differential equations for the temporal evolution of the vector field u = (u, p) ∈
R

4, u ∈ R
3, and may be written as

∂u

∂t
= F(u). (3.1)

Discretization of Eq. (3.1) consists in a discrete representation of the operators ∂t
and F, which appears as two separate problems from a naïve stand point. (They are,
of course, related by stability constraints such as the Courant-condition and related
constraints originating from the discretizations of the two operators; for a test of the
algorithms employed in this work, see Chap. 5.)

In this work, the spatial discretization is based on compact Padé schemes
(Sect. 3.2). For the temporal discretization, besides an existing explicit Runge–Kutta
time stepping scheme, a semi-implicit Runge–Kutta scheme is implemented. A semi-
implicit scheme overcomes the diffusive constraint on the time step expected to arise
at very high Reynolds number. This chapter only briefly lays out the general aspects
of incompressible flow simulations (Sects. 3.1, 3.2), and thereafter focuses on the
time integration. Time stepping schemes available for DNS codes are reviewed, and
the selection of an appropriate scheme is detailed (Sect. 3.3). The linear stability
region of the selected scheme is calculated (Sect. 3.4), and the actual implementation
of the semi-implicit scheme is discussed (Sect. 3.5).

3.1 The Pressure Problem

A key problem when integrating the incompressible equations in the native variable
formulation is an implicit coupling of the momentum equations with the divergence-
free constraint. This implicit coupling becomes explicit, once the divergence of
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the momentum equations is taken: a Poisson-type equation for the pressure results.
Hence, a standard explicit formulation for F, where the constraint is not enforced
separately, would violate the divergence-free constraint on the flow and lead to accu-
mulating errors while the pressure field is unknown. This can be overcome with the
split-step (also known as fractional step) approach, where the integration is split into
three parts:

ũn+1 = (
1 + τF ′) un (3.2a)

φn+1 = 1

τ
�−1(∇ũn+1) (3.2b)

un+1 = ũn+1 − τ∇φ = (
1 + τF ′) un − τ∇�−1 [∇ (

1 + τF ′)un
]
, (3.2c)

where τ is the discrete time step and F ′(u) = F(u)+∇p : R3 → R
3 operates on the

velocities u only. The pressure φn+1 is estimated in the second step (Eq.3.2b) based
on the intermediate velocities ũn+1 and used to project these intermediate velocities
such that the divergence-free constraint (Sect. 2.1) is fulfilled. This approach has been
introduced by Kim and Moin (1985); unfortunately, it is in general only first-order
accurate in the pressure (Perot 1993, also Eqs. 3.22b, 3.22c). For periodic boundary
conditions, however, second-order accuracy is recovered. Perot (1993) also describes,
how the method can be altered to achieve arbitrary orders of accuracy. Therefor, an
approximate factorization of the problem is used, in which the discrete Laplacian
� is replaced by DBG, where D and G are the discrete divergence and gradient
operators, and B is chosen such that the desired order of accuracy is achieved.

The problemwith the pressure–velocity coupling can be overcome if a non-native
variable formulation of the Navier–Stokes equations is used, the ω–w formulation.
In this formulation, the pressure is eliminated by taking the curl of the momentum
equations, and the temporal integration is carried out in terms of the vertical com-
ponent of velocity, w, and the vorticity, ω. It was considered here to express the
equations in the ω–w formulation. An analysis of their discretized version and the
involved computational load, however, shows that this would result in several addi-
tional global transpositions of three-dimensional fields. Hence, a primitive–variable
formulation of the Navier–Stokes equations is chosen which involves the solution of
one Poisson equation for the pressure at each sub-stage of the time integration.

3.2 Spatial Discretization

Compact Padé schemes are used for the spatial discretization. These schemes have
favorable resolution properties compared to discretizations based on local stencils
such as finite difference methods, also of higher order (Lele 1992). This advantage is
illustrated in Fig. 3.1 where the modified wavenumbers of a compact and centered-
difference scheme are shown. In comparisonwith a second-order centered-difference
scheme, the compact scheme resolves variability at high wavenumbers much better.

http://dx.doi.org/10.1007/978-3-319-45044-5_2
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Fig. 3.1 Modified wavenumbers (left panel) and amplitude error (right panel) according to (Lele
1992). The x-axis shows the wavenumber, where a wavenumber zero corresponds to the mean,
and a wavenumber k/π = 1 to the 2�(Ox)-fluctuation. Red lines are for first derivatives (solid
Sixth-order compact scheme, dashed Second–order centered differences), blue ones for second
derivatives (sixth-order compact scheme). The dashed black line shows the spectral accuracy

The amplitude error becomes significant only at wavenumbers k/π ≈ 0.5, and for
common standards, such as an accuracy of 80–90% at the smallest scale, less than
half the number of points in each direction is needed in comparison with a centered
difference scheme. This allows for a reduced number of collocation points, and
hence enables to study larger domains in terms of physical parameters given fixed
computational resources.

Such favorable resolution properties come at a price: For the calculation of a
compact derivative, a banded linear system involving all the points in the direction
along which a derivative is calculated needs to be solved: Compact Padé schemes
require computationally expensive global transpositions when a derivative is calcu-
lated (Sect. 4.1.3). Hence, any possible reduction of the number of transpositions,
i.e. derivatives to be calculated (no matter if first or second), has precedence over a
slight reduction in the number of floating-point operations when choosing a numer-
ical method and optimizing the algorithm.

3.3 Time Stepping Schemes

Time stepping consists of the discretization of the operator ∂t in Eq. (3.1). It is essen-
tially the approximation of the field u at some time t+τ in the future un+1 = u(tn+τ),
as a function of F(un), possibly earlier instances (F(un−{1,2,3,...})), and a future
instance F(un+1). It does not include the discretization of F, which is the spatial
discretization discussed above.

It is assumed here that available schemes for the time stepping are consistent,
i.e. they converge to an actual solution of the problem under consideration (if an
algorithm is checked against an analytical solution, consistency becomes

http://dx.doi.org/10.1007/978-3-319-45044-5_4
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synonymous to accuracy). The ideal choice of a time stepping scheme then ‘fairly’
balances the algorithm’s numerical cost and stability with the result’s accuracy.
Which balance is ‘fair’, depends on the questions asked and the problem under con-
sideration and is a complex decision at a researcher’s discretion. Stability is a binary
requirement: Given a problem, its spatial discretization and a time step τ , an algo-
rithm is either stable (and results are meaningful), or it is unstable (and ’blows up’).
Commonly, free parameters of an algorithm are used to optimize, i.e. maximize, its
stability region and to allow for larger time steps.

The computational cost function depends on the numerical resources at hand,
such as available memory versus computing time and the HPC architecture where
the algorithm is to be implemented, i.e. the level of parallelization required (cf.
Chap. 4). Based on the available schemes, the decision on the numerical algorithm
is detailed in Sect. 3.3.4.

3.3.1 Explicit Runge–Kutta Schemes

A very common approach is to estimate the velocity field un+1 as a function of
a single available instant, i.e. un+1 = f (un). The simplest of such schemes is the
explicit Euler-forward integration where

un+1 = un + τF(un). (3.3)

Explicit methods may have several sub-stages and involve several evaluations of
F; they are generalized in the class of Runge–Kutta schemes. In general, a Runge–
Kutta scheme requires enoughmemory to store the full fields of every sub-stage until
the end of the evaluation. Due to the flexibility in defining a Runge–Kutta method,
there exist classes which do not require any more memory than the explicit Euler
integration in Eq. (3.3). For reasons of memory efficiency, only such low-storage
methods are considered here.

Low-storage methods were introduced by Williamson (1980), and read as

wi+1 = wi + τi

⎡
⎣F(wi−1) +

i−1∑
j=1

αjF(wj)

⎤
⎦ (3.4a)

withw0 = un and un+1 = wnstep ,

where i ∈ {
0, . . . , nstep − 1

} ⊂ N, αi ∈ R and τi = τbi with bi ∈ R. Williamson
in particular discusses the set of third-order–three-stage Runge–Kutta schemes. In
such schemes, nstep = 3 and coefficients are chosen such that un+1 is a third-order
accurate estimate in τ . Here, scheme no.7 from Table1 in Williamson (1980, α33,
b33) and a higher-order version developed by Carpenter et al. (1991, α45, b45) are
used:

http://dx.doi.org/10.1007/978-3-319-45044-5_4
http://dx.doi.org/10.1007/978-3-319-45044-5_3
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b33 =
⎛
⎜⎝

1
3
15
16
8
15

⎞
⎟⎠ , α33 =

⎛
⎜⎝
0
1
3
3
4

⎞
⎟⎠ , b45 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1432997174477
9575080441755
5161836677717
13612068292357
1720146321549
2090206949498
3134564353537
4481467310338
2277821191437
14882151754819

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, α45 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
567301805773
1357537059087
2404267990393
2016746695238
3550918686646
2091501179385
1275806237668
842570457699

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(3.4b)
This time-stepping scheme has been successfully applied to a number of geophysi-

cal problem settings such as cloud-topmixing (Mellado et al. 2009a, b;Mellado 2012)
and the convective boundary layer (Garcia andMellado 2014; vanHeerwaarden et al.
2014). Ekman flow under neutral stability (Marlatt et al. 2010; Waggy et al. 2011;
Marlatt and Waggy 2012) and in the convective regime (Waggy and Biringen 2011)
has also been studied with this method.

Regarding the allowable maximum time step, an explicit Runge–Kutta method
employed for the integration of the Navier–Stokes equations is subject to two con-
straints: First, the Courant–Friedrichs–Lewy (CFL) criterion (Courant et al. 1928)
originating from the advection term: it determines the maximum allowable time
step τ given the velocity and grid spacing. In honor of Courant’s contribution, this
criterion is nowadays expressed in terms of a critical Courant number

Cr = τ

∣∣∣∣ Ui

�xi

∣∣∣∣∞ , (3.5)

where |(·)|∞ is the L-infinity norm returning the maximum of the field (·). (A critical
Courant number may not be exceeded in order for a time stepping scheme to be
numerically stable, and the reader is referred to Sect. 3.4 for the discussion of the
stability region of a Runge–Kutta method.) Second, a similar constraint originating
from the stability constraint of the diffusive term; if it becomes limiting, this constraint
is very strong as it requires the time step to decrease with the square of the minimum
grid spacing [min(�x)]2. While the CFL can be eliminated using fully implicit
methods only, the diffusive constraint alone can be overcome using semi-implicit
methods which are discussed next.

3.3.2 Semi-implicit Runge–Kutta Schemes

An alternative to such explicit methods are implicit methods, where

un+1 = f (un, un+1). (3.6)

If f depends in a non-linear way on un+1, a time-stepping scheme is called fully
implicit. Then, computationally prohibitively expensive algorithms for the inversion
of non-linear systems have to be employed. Such fully implicit methods are not
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considered here. In contrast to fully implicit methods, semi-implicit methods only
involve a linear dependency of f on un+1. This may be achieved by a linearization of
f with respect to un+1 or a splitting of the operator f into a linear and a non-linear part.
Since the diffusion constraint originates from a linear term, namely the Laplacian of
the velocity field, a splitting of F seems a reasonable option:

F(u) = L(u) + N(u), (3.7)

where L is a linear operator and N is a non-linear operator. Then one can use compu-
tationally relatively cheap implicit integration schemes for L and explicit schemes for
N . For high Reynolds numbers this decomposition is equivalent to a decomposition
into the stiff (L) and non-stiff (N) part of the operator F. As a consequence, implicit
time stepping for L permits larger time steps once the diffusive constraint on the time
step dominates the Courant-number constraint.

Third-order–three-stage scheme (SMR91). A semi-implicit scheme for incom-
pressible flow simulations has been applied first by Spalart et al. (1991), hereafter
referred to as SMR91. In the literature, there seems to be some confusion about the
origin of this scheme since Simens et al. (2009) refer to Akselvoll and Moin (1996);
there, however, SMR91 is used as reference. Another reference in this context is
Mohan Rai and Moin (1991) who refer to SMR91 as unpublished under a slightly
different title. SMR91 suggest the following scheme:

w1 = (
1 − β1τL

)−1 [
un + τ

(
α1L(un) + γ 1N(un)

)]
(3.8a)

w2 = (
1 − β2τL

)−1 [
w1 + τ

(
α2L(w1) + γ 2N(w1) + ζ2N(un)

)]
(3.8b)

un+1 = (
1 − β3τL

)−1 [
w2 + τ

(
α3L(w2) + γ 3N(w2) + ζ3N(w1)

)]
(3.8c)

with the physical requirement β i+αi = γ i for i ∈ {1, 2, 3}. They find that there is no
combination of parameters α, β, γ, ζ which fulfills the requirements for third-order
accuracy on both L and N . When the third-order constraint on L is dropped, they
find a one-parameter family of solutions to the non-linear problem. A member of
this family which they consider optimal is

α = (
29
96 ,− 3

40 ,
1
6

)
β = (

37
160 ,

5
24 ,

1
6

)
γ = (

8
15 ,

5
12 ,

3
4

)
ζ = (

0,− 17
60 ,− 5

12

)
.

(3.8d)

While this formulation formally does not overcome the drop to first-order temporal
accuracy in the pressure p due to a split-step approach (Perot 1993), SMR91 state
that the drop in accuracy related to the split-step approach does not affect the order
of accuracy for the velocities. Moreover, from a practical point of view, the stability
constraints on time stepping for the problems studied here are often so strong that the
time-integration error is outweighed by the spatial one by several orders ofmagnitude
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(Chap. 5). This scheme is used by a number of groups to study incompressible three-
dimensional turbulence:

• Neutrally, stably and unstably stratified Ekman flowwas studied by Coleman et al.
(1990), Coleman (1999), Coleman et al. (1992), Coleman et al. (1994), Coleman
and Ferziger (1996).

• Jiménez et al. (2009) used such a scheme for a comparison between the PBL and
channel flow.

• Itwas also employed in the primitive-variable formulation for the study of neutrally
and stably stratified channel flows (Flores and Jiménez 2006; Flores and Riley
2011).

• In a vorticity-based formulation, such a time stepping was used for seminal studies
of near-wall dynamics in channel flow under neutral stratification (del Àlamo and
Jiménez 2003; del Àlamo et al. 2004; Jiménez et al. 2004; Jiménez and Hoyas
2008) and under stable stratification (García-Villalba and del Àlamo 2011).

Third-order–three-1/3-step scheme (Nikitin 2006). The reason for the drop to
second-order accuracy when the time stepping is done explicitly for non-linear terms
and implicitly for linear terms is that in a three-stage Runge–Kutta scheme coeffi-
cients cannot be chosen such that the error from the implicit terms cancel. One can,
however, add a step which corrects for the error in the viscous terms and brings
the scheme back to third-order accuracy also for the linear term. Such a scheme is
introduced by Nikitin (2006) and reads as

w1 =(1 − τγ1JF)−1

[
un + τ

(
2

3
F(un) − γ1JF(un)

)]
(3.9a)

w2 =(1 − τγ2JF)−1

[
un + τ

(
1

3
F(un) + 1

3
F(w1) − γ2JF(w1)

)]
(3.9b)

un+1 =3

2
(αw1 + (1 − α)w2) − 1

2
un (3.9c)

ũn+1 =(1 − τγ3JF)−1

[
un + τ

(
1

4
F(un) + 3

4
F(w1) − γ3JFun+1

)]
(3.9d)

un+1 =(1 − τγ4JF)−1

[
un + τ

(
1

4
F(un) + 3

4
F(w1) − γ4JFũn+1

)]
, (3.9e)

where JF is a first-order approximation to the Jacobian of the non-linear operator
F. Moreover, it is α ∈ R and {γi}i=1,...,4 ⊂ R. The additional steps in Eqs. (3.9c)
and (3.9d) do not involve an additional evaluation of F and are thus computationally
relatively cheap. A straightforward choice is JF = ∇2 = L. In that case, for γi = 1,
the diffusion scheme would be purely implicit. For γi = 0 the scheme would be
purely explicit, for γ = 0.5, a Crank-Nicholson like integration is obtained. α = 3/2
yields maximum memory efficiency at runtime, and γ ≥ 1/3 follows from stability
considerations. In tests γ = 1/3 has produced the most accurate results (Nikitin
2006).

http://dx.doi.org/10.1007/978-3-319-45044-5_5
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This scheme has been successfully applied to the study of four-dimensional turbu-
lence (Nikitin 2011) and of the turbulent–non-turbulent interfaces and entrainment
across such interfaces (Holzner et al. 2008, 2010).

Additive semi-implicit third-order–three-stage Runge–Kutta scheme. Another
approach to retain third-order accuracy is the evaluation of the explicit and implicit
terms at different sub-stages as described by Zhong (1996):

w1 = h [1 − α1τJF]
−1 (N(un) + L(un)) (3.10a)

w2 = h [1 − α2τJF]
−1 (N(un + β21w1) + L(un + γ21w1)) (3.10b)

w3 = h [1 − α3τJF]
−1 (N(un + β31w1 + β32w2) + L(un + γ31w1 + γ32w2))

(3.10c)

un+1 = un + ω1w1 + ω2w2 + ω3w3, (3.10d)

where, as before, JF is in general a Jacobian of F; in incompressible flows JF =
L = � (as in SMR91) is a reasonable choice. Zhong (1996) fixes ω1 = ω2 = 1/8
and determines the remaining 10 free parameters from the accuracy and strong-
stability conditions. This method was derived and applied for the study of reactive
flow simulations.

The problem with this method is that only for γij = βij it could possibly be
formulated as a low-storage scheme. Then, however, the scheme reduces to a standard
semi-implicit Runge–Kutta scheme. SMR91 have shown that with such a scheme
third-order accuracy cannot be obtained.

3.3.3 Multi-level Schemes and Other Methods

Leapfrog with Robert–Asselin filter. The standard Leapfrog method is an explicit
three-level scheme:

ui+1 = ui−1 + 2τ f (ui). (3.11a)

This method is energy-conserving in time and time-reversible (in contrast to Runge–
Kuttamethods), but unconditionally unstable for all dissipative systems. The instabil-
ity is caused by a 2τ temporal oscillation, the computational mode. For applications
in numerical weather forecasting, the scheme was modified (Robert 1966; Asselin
1972) by a smoothing that damps the computational mode, the so-called Robert–
Asselin filter:

ūi+1 = ui−1 + 2τ f (ui) (3.11b)

ui+1 = ūi+1 + α(ūi+1 − 2ui + ui−1); 1 
 α ∈ R+ (3.11c)

This scheme is still implemented in most weather and climate models, but also
applied in DNS of the nocturnal low-level jet (Shapiro and Fedorovich 2009) and
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for the investigation of the Prandtl-number dependence of convection (Shapiro and
Fedorovich 2004).

Adams-Bashforth–Cranck-Nicholson (AB–CN) method.Thismulti-levelmethod
has been introduced by Kim and Moin (1985), and formally reads as

ũ =
[
1 − τ

2
L
]−1 [

un + τ

2

(
3N ′(un) − N ′(un−1) + L(un)

)]
(3.12a)

φn+1 = 1

τ
�−1 (∇u)) (3.12b)

un+1 = ũ − τ∇φn+1, (3.12c)

where, as in Eq. (3.2), N ′(u) = N(u)+∇p and L is the discrete Laplacian �. Due to
the split-step procedure, this method is second-order accurate for periodic domains.
This scheme is a three-level scheme and hence requires at least 50% more memory
than low-storage or explicit schemes.

This scheme has been applied successfully toDNSof turbulent channel flowunder
neutral (Kim et al. 1987; Moser et al. 1999; Abe et al. 2004) and stable (Nieuwstadt
2005) density stratification. Turbulent Ekman layers have been simulated with this
scheme by Shingai and Kawamura (2004) as well as (Miyashita et al. 2006).

Others. A predictor–corrector second-order scheme is used by Najm et al. (1998).
Kimet al. (2002) develop a time stepping based on an approximate factorization of the
second-order linearized equations. These schemes are not considered here in detail
since they are of low order while their implementation would require considerable
technical effort.

3.3.4 Choice of a Method

Above, several options were presented which are employed successfully in DNS of
turbulent flow. Now, a scheme is chosen for implementation.

Given the high accuracy of the spatial discretization (compact Padé schemes,
Sect. 3.2), a low-order time stepping such as Euler-forward seems inappropriate. This
would also require very small time steps since the stability region of an Euler scheme
is rather small. For reasons of memory economy, schemes that require more memory
than a low-storage Runge–Kutta scheme (current implementation), do not come into
question. Given the options described above, the semi-implicit third-order–three-
stage scheme introduced by SMR91 (Eqs. 3.8a–3.8c, henceforth SIRK3) appears as
the most appropriate option to the author in the case when the diffusion number
constraint on the time step dominates the Courant–Friedrichs–Lewy criterion. This
scheme is not well-documented in the literature (SMR91 only devote one paragraph
in an appendix to the method). The rest of this chapter is devoted to the description
of this scheme’s stability properties, some details of the implementation and possible
optimizations.
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3.4 Stability of the SIRK3 Scheme

The stability properties of the algorithm under consideration are unknown a priori
and have not been discussed in the literature to the author’s knowledge. SMR91
mention a theoretical stability limit of

√
3 and routinely used peak Courant numbers

of up to two. Consider the first-order ODE

ds

dt
= λs, s ∈ R, λ ∈ C, s̃(t) = s0 exp λt, (3.13a)

where s̃ is the only non-trivial solution to this initial value problem with s0 ∈ R. Let
s0 := 1. The SIRK3 scheme can be used to estimate s̃(τ ) where τ is the integration
time step, i.e. the solution after a single iteration is considered.Note, that there are two
possibilities to apply the scheme to this problem: First, one can assume {Le(s) = 0,
Ne(s) = λs} which is a purely explicit integration and essentially a standard third-
order Runge–Kutta integration. Second, one can assume {Li(s) = λs, Ni(s) = 0}
which is a Runge–Kutta integration in which each sub-step is purely implicit. The
corresponding numerical estimates for s̃(λτ) are

s̃e(λτ) = 1 + λτ + 1

2
(λτ)2 + 1

6
λτ 3 (3.13b)

s̃i(λτ) = 1 + τ 1
e k

1
exλ

1 − τ 1
e k

1
imλ

1 + τ 2
e k

2
exλ

1 − τ 2
e k

2
imλ

1 + τ 3
e k

3
exλ

1 − τ 3
e k

3
imλ

. (3.13c)

Knowing the exact amplification factor exp λτ , the numerical dissipation and disper-
sion are obtained as the amplitude and phase of s̃{i,e}(λ)/eλτ , respectively. The linear
stability region of a fully explicit scheme is defined by |s{i,e}| < 1 which is shown
as a thick black line in Fig. 3.2. There, also the numerical dissipation and dispersion
for the explicit and semi-implicit integration of the above problem is shown.

Themaximum allowable Courant number (CFL) for the advection scheme used in
the estimation ofF is themodulus of the non-trivial root of s̃e(0+bi), b ≈ 1.73which
has to be normalized with the maximum modified wavenumber for the advection
operators, i.e.

CFLa,max = 1.731

1.989
� 0.87. (3.14)

This is required purely for stability of the algorithm. The upper panel of Fig. 3.2
characterizes integration errors of the advection. It shows that for

CFL = 0.9 × CFLa,max � 0.8 (3.15)
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Fig. 3.2 Numerical dissipation (left) and dispersion (right) per time step τ for the explicit (upper
panel) and semi-implicit (lower panel) integration. The dark red and blue areas indicate regions in
which the errors are less than 1% (red negative/damping, blue positive/amplification). Light colored
regions are correspondingly for 10% errors. The overall stability envelope of the explicit scheme
(|se(λτ)| = 1) is shown by a thick solid black line. The outer dashed box shows precision down to
2�, where � is the grid spacing. The inner box shows the precision if results are considered only
down to 4�.

(the outer dashed box) the dissipation errors are well below 10% apart from small
fractions of the left end of the box. If only waves down to 4� (the inner dashed box)
with � the grid spacing are considered, the error is below one percent for nearly all
wavenumbers possible.

Since the diffusion is calculatedwith the semi-implicit integration, diffusion errors
are characterized by the lower panel in Fig. 3.2. By design of the algorithm the semi-
implicit part is unconditionally stable for Re(λ) ≤ 0. Nonetheless, the diffusive CFL
can be used to control the maximum error, and for CFLd < 1.7 all λ have both
dissipative and diffusive errors below 10% down to 2� and below 1% down to 4�.
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3.5 Implementation of the SIRK3 Scheme

3.5.1 Rotation of the Grid: Equations Solved by the DNS

The Navier–Stokes equations for a Boussinesq flow read as

∂ui
∂t

= −uj
∂ui
∂xj

− ∂πtot

∂x
+ f εik3uk + ν

∂2ui
∂x2j

(3.16)

(cf. Chap. 2). With the large-scale pressure gradient ∂πgeo/∂xk , a parameter external
to the problem, the geostrophic balance reads as

f Gi = εik3
∂πgeo

∂xk
. (3.17)

∇πtot can then be split into an ageostrophic contribution ∇π and a geostrophic
contribution f Gi to rewrite Eq. (3.16) as

∂ui
∂t

= −uj
∂ui
∂xj

− ∂π

∂xi
+ f εik3(uk − Gk) + ν

∂2ui
∂x2j

, (3.18)

which is valid in a systemwhere the spanwise coordinate coincides with the direction
of the pressure gradient.

In the vicinity of the wall, turbulence is manifest in the form of wall-streaks.
These streaks are approximately aligned with the mean flow close to the wall, and
they have a spanwise extent of tens of wall units while they are very long (up to 1000
wall units) in the streamwise direction (Jiménez and Pinelli 1999). It is hence numer-
ically beneficial to align the coordinate system with the wall-shear stress instead of
the geostrophic wind; then, the highest resolution is only required in the spanwise
direction where the streaks have the largest gradients. Although the exact turning of
the wind is unknown a priori (it is part of the solution), one can attempt to minimize
numerical errors by rotating the grid into the direction expected for α. Therefore,
Eq. 3.18 are transformed with the rotation matrix (variables in the rotated frame of
reference are indicated by a subscript α) such that

⎛
⎝ uα

vα

wα

⎞
⎠ =

⎛
⎝ cosα − sin α 0

sin α cosα 0
0 0 1

⎞
⎠

⎛
⎝ u

v
w

⎞
⎠ , (3.19)

and the prognostic equations for uα = (uα, vα,wα)T are

http://dx.doi.org/10.1007/978-3-319-45044-5_2
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∂uα

∂t
= −uα∇uα − ∂π

∂xα

+ ν � uα − f
(
vα − G2,α

)
∂vα

∂t
= −uα∇vα − ∂π

∂yα

+ ν � vα + f
(
uα − G1,α

)
∂wα

∂t
= −uα∇wα − ∂π

∂z
+ ν � wα

(3.20)

where G1,α = G cosα and G2,α = −G sin α. This modification allows to increase
the grid spacing in the direction approximately aligned with the surface stress by a
factor 2. Since this is the direction where the Courant-constraint is strongest, it also
allows for larger time steps and has the potential to reduce the amount computing
time to about one quarter of its original value—without having to sacrifice accuracy
or domain size.

3.5.2 Buffer Zone

The flow is in geostrophic equilibrium at its upper boundary z = ∞. In a verti-
cally finite domain, however, boundary effects are expected and deviations from
geostrophic equilibrium can occur both due to deviations from the height-dependent
laminar solution from the equilibrium and long-lived remnants of turbulent bursts
in the outer layer (Chap.6). A simple no-slip condition would lead to an artificial
boundary layer in the vicinity of such structures; a free-slip boundary condition can
cause reflections and hence artificial downward-fluxes of turbulent energy obscuring
turbulence dynamics in the outer layer of the PBL where turbulent fluxes are gener-
ally small. To eliminate those effects, a Rayleigh-damping layer is introduced at the
top of the domain. In all simulations, this layer extends over the upper 16 points and
has a damping time of 1, i.e. the damping of a turbulent structure at the uppermost
level of the domain over the inertial period 2π/f is e−2π ≈ 6.8×10−3. The damping
coefficient σ(z) follows the relation:

σ(z) =
{

z < zd; 0
zd ≤ z ≤ ztop; α

(
z− zd
ztop − zd

)β . (3.21)

In this work, it is α := 1 and β := 2 such that σ(z) is smooth and differentiable with
respect to the height z.

3.5.3 Discretization in the Interior of the Domain

One can write the discretized problem as

1

τ
(wm+1

i − wm
i ) = −wm∇wm

i + 2εik3�jw
m
k + ν(α � wm

i + β � wm+1
i ) − Diπ

m (3.22a)

http://dx.doi.org/10.1007/978-3-319-45044-5_6


42 3 Discretization

where � is the discrete Laplacian, Di is the discretized derivative and ∇ =
(D1,D2,D3). Further, define L ≡ ν�, and Ni(wm) ≡ −wm· ∇wm

i + 2εik3�jwm
k

with wm = (
wm
1 ,wm

2 ,wm
3

)
. It follows

wm+1
i = (1 − βmτL)−1

[
wm
i + τ

(
Niwm + αmLwm

i − Diπ
m
)]

⇒ wm+1
i = (1 − βmτL)−1

[
wm
i + τ

(
Niwm + αmLwm

i

)]
︸ ︷︷ ︸

w̃m
i

−τ

[ ∞∑
l=0

(βmτL)
l

]
Diπ

m.

(3.22b)

Solving for the full Eq. (3.22b) is—due to the series expansion of the Helmholtz
operator (1 − βmτL)−1—a transient problem and numerically prohibitively expen-
sive. Instead one can truncate the Neumann series after the first member (l = 0) to
arrive at the O(τ ) accurate approximation to the full equation

wm+1
i = w̃m

i − τDiπ
m + O(τ 2). (3.22c)

(Higher orders can be retained if desired.) This approximation is equal to a splitting
of the problem into two sub-steps as described in Sect. 3.1, and it quantifies the
splitting error to be of first order. In a physical sense this means, the pressure term
is utilized to enforce the physical constraint of incompressibility (Sect. 3.1). This is
done through a projection of an intermediate momentum field—namely that where
all the source and sink terms for momentum act but the pressure gradient force—onto
an incompressible flow field that fulfills the boundary conditions.

In the set of Eqs. (3.8a–3.8c), the operator L occurs twice. Mathematically, this is
correct since part of the linear tendency is integrated explicitly. From a computational
perspective this is rather inconvenient. It requires the full Laplacian to be evaluated at
each sub-stage, and on top a Helmholtz equation has to be solved. For the calculation
of w̃m

i the algebraic identity L−1 ◦ L = 1 can be exploited to save this double-
evaluation of the Laplacian:

ατ [1 − βτL]−1 L = α

β

[
1 − βτL−1] [−1 + βτL + 1] (3.22d)

= α

β
[1 − βτL]−1 [βτL − 1] + α

β
[1 − βτL]−1 1

= α

β

[
[1 − βτL]−1

] − α

β
1. (3.22e)

Hence, the explicit part of the diffusion can be accounted for by operating on a field
which is augmented by α/β. The augmentation is then removed after the Helmholtz
solver (the term −α/β1 in Eq. (3.22e)). This algebraic modification eliminates all
(3+nscalar)·3 secondderivatives to be calculated and thus decreases the computational
cost for the integration of the equations by about 50%. Defining

w̃′m
i ≡ w̃m

i

(
1 + αm

βm

)
,
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Eq. (3.22c) reads as

wm+1
i = (1 − βmτL)−1

[
wm
i

(
1 + αm

βm

)
+ τNi(w

m)

]
︸ ︷︷ ︸

wm
i explicit︸ ︷︷ ︸

w̃′m
i

−αm

βm
wm
i

︸ ︷︷ ︸
w̃m
i

−τDiπ
m. (3.22f)

3.5.4 Dirichlet Boundary Conditions for the Semi-implicit
Solver

Due to the split-step approach for the time integration, numerical boundary condi-
tions for the intermediate velocity w̃m

i and the pressure πm are needed which are
consistent with the discretization of the problem. In the case where Dirichlet bound-
ary conditions are prescribed, it is assumed that they are not time-dependent and
hence wm+1

i |� = wm
i |� where � is the boundary of the computational box. Extend-

ing Eq. (3.22b) to the boundaries where ∂t = 0 in the case of Dirichlet boundary
conditions, this yields

{
Niwm + αmLwm

i + βmLwm+1
i = Diπ

m
} |�

⇒ {
Niwm + Lwm

i + O(τ ) = Diπ
m
} |� (3.23a)

where the constraint αm+βm = 1 is used. Substituting (3.23a)—only valid on�—to
Eq. (3.22c) yields the following Dirichlet boundary conditions on w̃m

i and Neumann
boundary conditions on πm:

w̃m
i |� = wm+1

i |� + τ
[
(Niwm)|� + (Lwm

i )�
] + O(τ 2) (3.23b)

D3π
m = N3wm + Lwm

3 + O(τ ). (3.23c)

The Helmholtz-type Eq. (3.23b) is, however, not solved for w̃m
i but w̃′m

i =
w̃m
i + α

β
wm
i . In the particular case of a turbulent Ekman boundary layer, the Dirichlet

boundary conditions do not depend on time. Eq. (3.23b) to first order in τ reduce to

w̃′
1
m|� = w1|�

(
1 + α

β

)
+ τ

(
νD(2)

1 wm
1 + N1(wm)

)
|�

w̃′
2
m|� = w2|�

(
1 + α

β

)
+ τ

(
νD(2)

2 wm
2 + N2(wm)

)
|�

w̃′
3
m|� = w3|�

(
1 + α

β

)
+ τ

(
νD(2)

3 wm
3 + N3(wm)

)
|�

(3.23d)

where D(j)
i is the jth discrete derivative in the direction of i. At the bottom boundary,

w̃′
1|�,bottom = w̃′

2|�,bottom = 0 (no-slip condition), and w̃′
3|�,bottom = 0 (no-penetration
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condition). At the top boundary, Neumann boundary conditions are used for the
horizontal velocity components, i.e. ∂zw̃′

1
m|�,top = ∂zw̃′

2
m|�,top, and for the vertical

component also the no-penetration condition ∂zw̃′
3
m|�,top is employed.

Due to the neglect of the implicit tendency at the boundary, the sub-stepEq. (3.23d)
in which the boundary conditions for the Helmholtz solver are obtained, is purely
explicit. Hence, formally, this scheme has the same stability bounds as the fully
explicit scheme. The diffusion in the interior of the domain, however, aids stability
such that in practice the scheme is stable up to diffusion numbers on the order of
103—orders of magnitude larger than the value of 0.25 for the fully explicit scheme.
It was decided nonetheless to circumvent this boundary-instability by resorting to
the leading-order accurate estimate of the boundaries consisting only in the first term
on the RHS of Eq. (3.23d) since in tests it does not impact on the overall accuracy.

3.5.5 Integration of a Scalar Variable

Any scalar s can be discretized in the exact same way as the velocities:

(sm+1 − sm)/�t = −wm∇sm + ν(α � sm + β � sm+1). (3.24)

In that case, due to the absence of pressure forces s̃ m = sm+1, where s̃ is defined
analogously to w̃ m. Hence, no additional numerical boundary conditions are needed
on s̃ m as s̃ m|� = sm+1|� .

3.5.6 Description of the Implementation

Let τ i
e ≡ τγ i be an effective sub-step, and let w0 = un and un+1 = w3. The scheme

in Eqs. (3.8a)–(3.8c) then becomes

w1 = (
1 − k1imτ 1

e L
)−1 [

un + τ 1
e

(
k1exL(un) + N(w0)

)]
w2 = (

1 − k2imτ 2
e L

)−1 [
w1 + τ 2

e

(
k2exL(w1) + N(w1) + k2coN(w0)

)]
(3.25)

w3 = (
1 − k3imτ 3

e L
)−1 [

w2 + τ 3
e

(
k3exL(w2) + N(w2) + k3coN(w1)

)]

with kex = α/γ , kim = β/γ , kco = ζ/γ . This modification allows to pre-calculate
α/γ , β/γ and ζ/γ and thus saves one floating point operation per grid point and
Runge–Kutta sub-stage.

Figure3.3 shows how these equations are translated to the present algorithm.
When integrating the equations, all velocities and active scalars cannot be updated
until the end of the explicit part since they are used for the advection and buoyancy
terms respectively. Also, the old tendency cannot be overwritten since it is needed
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Fig. 3.3 Pseudo Code listing for the implementation of the semi-implicit Runge–Kutta solver



46 3 Discretization

for the explicit update (lines 17–19). The old tendencies are hence stored to tempo-
rary arrays at the beginning of the sub-stage (line 3, tmp4, tmp5, tmp6 for u, v,w
respectively). The explicit terms (operator N) of the right-hand side are calculated in
lines 10–12. In lines 17–19, the intermediate velocities containing explicit tendencies
(wexplicit , Eq. 3.22f) are obtained and stored to the temporary arrays tmp1, tmp2,
and tmp3. Next, the boundary conditions for the Helmholtz equations are prepared;
due to the augmentation of the velocity fields (and similarly the scalar fields) by
1 + kex/kim, the boundary conditions of the Helmholtz-solver have to be adapted
accordingly (not shown). The Helmholtz-solver always uses Dirichlet boundary
conditions at both the bottom and the top of the computational domain, i.e. values
at the boundary are not affected by diffusion, also in the case of Neumann boundary
conditions. The three Helmholtz equations for the augmented velocities

w̃′m
i = (1 − β iτL)−1wi,explicit (3.26)

(cf. Eq. 3.22f) are solved in lines 31–33. The intermediate velocities w̃m
i are obtained

in lines 35–37. Now, the pressure projection step is carried out (lines 40–49). At
the end of the sub-stage the velocities (u, v, and w) are updated with the explicit
tendency, implicit diffusion and the pressure-tendency. The explicit tendencies are
saved in arrays h1-3; they constitute the old tendencies which have, multiplied by
kico, to be added after the explicit part of the next sub-stage if there is one (lines
17–19). If i = nstep, the velocity fields contain the estimate un+1, and the iteration
step is finished. Note that, as shown in Fig. 3.3, boundary conditions are enforced
before the implicit solver and at the end (after incorporation of the pressure terms) of
each sub-stage again. It is found here that this additional enforcement of boundary
condition increases the overall accuracy of the code for a case in which diffusive
errors dominate from second order to third order in space (Sect. 5.3).
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Chapter 4
Overlapping Communication
and Computation

From a computational perspective direct numerical simulation (DNS) of turbulent
flows is enormously challenging (Sect. 4.1). In fact, the computing power needed
for turbulence resolving simulation at Reynolds numbers well within the turbulent
regime became available only recently with the advent of massively parallel super-
computer systems (http://top500.org). And this is the main reason why the work
presented in this thesis is carried out right now—even though the scientific questions
are pertinent since many years, sometimes even since decades (Chap. 1).

A utilization of current high-performance computing (HPC) resources demands
a distribution of the problem to a large number of independently acting computing
entities which requires communication in between those entities. With increasing
problem size and number of computing entities, the share of time that is needed to
communicate in between the computing entities increases. While data are being sent
and received over the network, the computing entities are often idle, i.e. they do not
process data. For reasons hidden deep in the implementation of the Message Passing
Interface, this is also the case if so-called non-blocking versions of send and receive
operators are used. A library called NB3DFFT that works around this issue has been
developed by J. H. Göbbert at RWTH Aachen University/FZ Jülich.

In Sects. 4.2 and 4.3 I demonstrate how this library is adopted by the algorithm
used in this work to efficiently overlap the communication and computation of data
at a rather high level in the code. For the configurations used in this work, this saves
about 10% of computing time. For even larger simulations, this optimization pushes
the threshold of feasible simulations since the savings increase with simulation size.
It also allows to obtain results—spending the same amount of computing time as a
standard implementation—in less real time since it makes parallelization more effi-
cient. Given the current trend in HPC to ever more distributed system, this approach
is expected to also be useful for upcoming generations of HPC systems.

© Springer International Publishing AG 2017
C. Ansorge, Analyses of Turbulence in the Neutrally and Stably
Stratified Planetary Boundary Layer, Springer Theses,
DOI 10.1007/978-3-319-45044-5_4

49

http://top500.org
http://dx.doi.org/10.1007/978-3-319-45044-5_1


50 4 Overlapping Communication and Computation

4.1 Motivation—A Rough Estimate of the Computational
Demand

4.1.1 Memory Demand

The direct numerical simulation of a turbulent flow is very computing intense: The
resolution of all relevant degrees of freedom in a turbulent flow—including the Kol-
mogorov scale ηwhere viscosity acts—requires enormous computational power. The
transitional Reynolds number Retrans, i.e. that Re at which a flow becomes unstable
to perturbations and transitions to turbulence, gives a rough estimate for the degrees
of freedom that are at least needed for the direct simulation of a turbulent flow. Fix-
ing a large scale L0, it is η ∝ L0Re−3/4, and one can assume that—independent
of L0—the number of degrees of freedom necessary per direction is Re3/4. It is
O(Retrans) = 28 − 212 (Moin and Mahesh 1998; Moody 1944; Lilly 1966) implying
a minimum of 218 − 227 degrees of freedom in a turbulence-resolving simulation.
To be well within the turbulent regime, it is required that Re>Retrans, and a reason-
able estimate for the degrees of freedom is 227. The resolution properties of compact
schemes demand around 8×227 = 230 collocation points for an accurate enough rep-
resentation of the relevant scales (Fig. 3.1). Here a three-dimensional turbulent flow
with three velocity components and one scalar (4 prognostic variables) is considered.
The fields and their tendencies have to be stored separately in double precision and
at least 6 arrays are needed as working storage (Sect. 3.5.6, Fig. 3.3). The amount of
random-access memory (RAM) required in bytes is then at least (8 + 6) × 8 ≈ 27

times the number of collocation points, which amounts to

⎡
⎢⎢⎢⎢⎢⎣

24︸︷︷︸
arrays

× 23︸︷︷︸
double precision

×
⎛
⎝ 23︸︷︷︸

resolution

× 227︸︷︷︸
dof

⎞
⎠

︸ ︷︷ ︸
number of collocation points

⎤
⎥⎥⎥⎥⎥⎦

Bytes ≈ 134Giga Byte (4.1)

(For notational convenience, the definitions of Giga and Terra in terms of powers
of two are used here, i.e. Mega refers to 220, Giga to 230 and Tera to 240.) Such an
amount of memory is not available as RAM on any modern computer, and it requires
the utilization of high-performance computing (HPC) resources. The problem has to
be distributed over many computing entities that—altogether—possess the desired
amount of memory.

http://dx.doi.org/10.1007/978-3-319-45044-5_3
http://dx.doi.org/10.1007/978-3-319-45044-5_3
http://dx.doi.org/10.1007/978-3-319-45044-5_3
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4.1.2 Computational Demand

The operation count per time-integration sub-step is a large (O(102)) integer multi-
ple of the number of collocation points such that the order of the number of floating
point operations (FLOPs) is similar to the number of bytes utilized in the RAM.
For the 4th order explicit Runge–Kutta scheme, five sub-steps are carried out per
iteration. I estimate the computational demand per iteration step to be of the order
of 1 TerraFLOP. On modern architectures, heavily optimized computer codes deal-
ing with the simulation of turbulence utilize no more than 2–5% of the theoretical
maximum performance of a computer which increases this estimate in terms of the
CPU cycles necessary to perform the calculations to around 26 Terra FLOP.

The number of time steps required to resolve an eddy-turnover time is due to
the Courant-criterion also approximately inversely proportional to the Kolmogorov
scale η, and may be estimated by 212·3/4 = 29 (212 degrees of freedom have been
estimated above as necessary for a flow well within the turbulent regime). It is,
however, not enough to calculate one eddy-turnover time since a simulation starts
from a non-turbulent initial condition, and the flow initially transitions to a turbulent
state. This transient takes several eddy-turnover times where its particular properties
and duration depend on the initial conditions applied. Once a flow is in its turbulent
state, usually a simulation is continued for several eddy turnover times either to
accumulate statistics and improve convergence (in the case of a stationary problem)
or to check the self-similarity hypotheses or convergence to quasi-equilibrium states
(in a temporally evolving problem). Assuming, a flow is integrated over 25 eddy-
turnover time scales (24 for the initial transient and another 24 for the statistical
convergence), a need for at least

⎡
⎣ 25︸︷︷︸

eddy−turnover times

× 26︸︷︷︸
iterations

× 29︸︷︷︸
operation count

⎤
⎦Terra FLOP = 220 Terra FLOP (4.2)

is obtained.
Even if the problemwouldfit into thememory of amodern computer—this amount

of operations cannot be calculated in a reasonable period of time. With modern CPU
operating at clock rates of around 23Giga FLOP FLOP per second, such an endeavor
would take

1000 × 217 seconds ≈ 4 years (4.3)

and require a sufficient extension of funding for this work that is not compatible with
theMPG’s guidelines and recommendations for the education of doctoral students by
the national German science council (Wissenschaftsrat 2002). Consequently, HPC
resources have to be utilized not only for reasons of memory utilization but also due
to high computational demand.
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4.1.3 The Link Between Spatial Discretization
and Communication

Turbulence simulation is a global task in the sense of distributed computing, i.e. the
problem cannot be split into independent sub-problems whose solution is compu-
tationally demanding. On the contrary to some applications in genetics or quantum
physics, where this is the case, in turbulence simulations the need for computation
and data exchange is strongly intertwined. In the governing equations of an incom-
pressible flow, this need for communication is manifest in two ways: the derivatives
and the Poisson equation for the pressure (Chap.2, Sect. 3.1). Both of these opera-
tors rely on non-local information that may reside in a different computing entity.
These two operators—the horizontal derivative and the Poisson equation—can be
treated separately: The intermediate flow fields contain all source and sink terms for
momentum but the pressure and only require derivatives to be calculated; the Poisson
equation is then solved in a second step to project the equations to an incompressible
flow field (cf. Sect. 3.1, Eqs. 3.2, 3.22b, 3.22c).

In the particular case of the present DNS algorithm, more than two thirds of
the computer time is spent in calculating derivatives and transferring the associated
information in between the computing entities. Hence, the focus here is on the opti-
mization of a Runge–Kutta sub-stage without the calculation of the pressure term.
Besides a few additions and multiplications, this consists mostly in the calculation
of derivatives. The specific amount of communication that is necessary to calculate
a single derivative, the stencil, depends on the spatial discretization that is chosen.

Spectral schemes. If a fully spectralmethod is employed, thewhole (three-dimensio-
nal) flow field is needed to determine the value of any derivative; a spectral method
has a global stencil; the calculation of derivatives in that case is rather expensive
since two Fourier transformations are solved to obtain a derivative in physical space.
Optimized implementations of the Fourier transformation achieve an operation count
of O

{
(N log N )3

}
for a three-dimensional problem where N is the problem size

in one direction. This effort comes with the benefit of a mathematically perfect
derivative, i.e. no spatial resolution is lost in the discretization of the derivatives.
A measure for the performance of the discretization of a derivative is the modified
wavenumber (Fig. 3.1), and spectral methods have an optimal modified wavenumber
k ′ = k.

Themajor drawback of a Fourier spectral scheme is that it can only handle equidis-
tant grids in all three spatial directions. In particular in the vertical direction, where
often points are clustered in the viscous sub-layer near the wall, this may be problem-
atic. A possible solution is to solve vertical derivatives using a Chebyshev transfor-
mation or one of the two schemes discussed next—centered differences or compact
Padé schemes.

Centered-difference schemes. On the contrary to a fully spectral method, centered
difference schemes have local stencils. They commonly employ between three and
seven collocation points, and are rather cheap in terms of their operation count.

http://dx.doi.org/10.1007/978-3-319-45044-5_2
http://dx.doi.org/10.1007/978-3-319-45044-5_3
http://dx.doi.org/10.1007/978-3-319-45044-5_3
http://dx.doi.org/10.1007/978-3-319-45044-5_3
http://dx.doi.org/10.1007/978-3-319-45044-5_3
http://dx.doi.org/10.1007/978-3-319-45044-5_3
http://dx.doi.org/10.1007/978-3-319-45044-5_3


4.1 Motivation—A Rough Estimate of the Computational Demand 53

The operation count goes in all cases as O
{
N 3

}
, and in the case of a second-order

centered derivative is (2N )3 with a three-point stencil. In terms of their resolution
properties, centered-difference schemes are inferior to spectral methods:While, sim-
ilar to spectral schemes, they cannot resolve any feature with a wavelength smaller
than 2�, the modified wavenumber deviates from the ideal one already for much
larger features. In fact, Fig. 3.1 shows that even at a wavelength of 4� the amplitude
error is already around 40%. There are higher-order centered difference schemes
with wider stencils that perform much better. A common property of centered dif-
ference schemes (no matter at what order) is that they are numerically diffusive.
This means, the small wavelengths where normally diffusion extracts energy from
the turbulent cascade are systematically damped stronger than the equations require.
While this aids physical stability, it might affect the turbulence dynamics at the small
scales which is undesired when simulating turbulence directly. This can lead to an
only apparent resolution of the turbulent cascade where numerical diffusion breaks
the cascade on scale much larger than the Kolmogorov scale.

Compact Padé schemes. A possibility to work around this problem of numerical
diffusion are compact schemes. Not only do they have a smaller amplitude error
in the modified wavenumber analysis (Fig. 3.1) but also are they less diffusive at
high wavenumbers (Lele 1992, Fig. 5). For a compact scheme, all data along the line
over which the derivative is calculated are necessary; a compact method has a global
stencil, separately along each direction; the calculation is—compared with Fourier
transformations—rather cheap since only bandedmatrices have to be inverted, which
is possible in an operation count of O

{
N 3

}
.

4.2 Approach and Implementation

4.2.1 Why Overlap Communication and Computation?

In the present implementation of the algorithm the communication of data is carried
out whenever it is needed (and once an array is available in transposed form it
is saved until it is not needed any more to save transpositions). While calls to the
Message-Passing Interface are active, no calculationhappens and the data are globally
transposed as desired. Let these non-local transpositions occupy a fraction fcomm and
all the other calculation a fraction fcalc of the computing time such that

fcalc + fcomm = 1. (4.4)

This situation is sketched in part (A) Fig. 4.1: The local-in-memory calculation
of body forces and derivatives with available data—either because they have been
transposed before or because they do not need to be transposed—only utilizes the
floating point unit (FPU) of each computing entity separately. The transposition
consists in the send and receive operations of data as well as a local transposition,

http://dx.doi.org/10.1007/978-3-319-45044-5_3
http://dx.doi.org/10.1007/978-3-319-45044-5_3
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(A)

(B)

(C)

Fig. 4.1 Schematic of re-organization of the algorithm for non-blocking communication. Part A
shows a standard implementation where data is first transposed and then a derivative is calculated.
In Part B, a possible re-organization of the code is shown where the communication is organized
in such a way that in a first step, data are packed locally, and the communication is initiated (dark
blue part); While the data is sent in a second step, the FPU is idle. An isolated part of calculations
can be identified that (optimally) occupies a similar period of time as the communication over the
network. The final layout where a part of the computation is done simultaneous to the computation
is shown in Part C

and as such it generally utilizes both the network and the local FPU. It is, however,
possible to re-organize the communication such that over significant parts of the
process mainly the network is utilized as outlined in part (B) of Fig. 4.1. Then, a
suitable part of local calculations which can be done on data that do not need to be
transposed (or are already available in transposed form) can be performed while the
communication utilizes the network. The overlapped version of the algorithm has
five (instead of two) phases as sketched in part (C):

(1) The communication is initialized and the data are packed for the network-send
operation.

(2) The network-send operation takes place, which utilizes the network card. Con-
comitantly, calculations are performed on the FPUs.

(3) The calculations might take longer or shorter than the network send operations.
In the case sketched here, the part of the communication that again needs to
utilize the FPUs has to wait until the calculations are finished. It might as well
be the case that the network part takes longer (this is not sketched here).

(4) The transpositions are finished.
(5) The remaining calculations with transposed data are carried out.

Ideally, the time needed to perform the calculations is similar to the time that the
send and receive operations over the network require. In a real-world set-up, this is
hard to achieve, and one or the other will take longer. The saved time fraction fover,
is the minimum of the two periods.
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4.2.2 Design of the NB3DFFT Library

The implementation of a framework to overlap communication and computation
has been carried out by J. H. Göbbert at RWTH Aachen University and is available
through a library called NB3DFFT. To achieve the goal of an overlap between com-
munication and computation which is sketched in a very simple variant in Fig. 4.1,
this library takes an approach based on two threads implemented via openMP. The
two threads are a worker and a scheduler thread—where the scheduler thread takes
over the communication. This happens on demand by the worker thread.

At the beginning of a code region suitable for nonblocking communication, the
scheduler thread is started in parallel with the worker thread; the scheduler now
waits for a communication call by the worker thread. (This is particularly efficient
on systems which have more logical than physical processors which is the case
at the Jülich Supercomputing Centre where simulations for this work have mainly
been carried out.) Once the worker thread needs data from another computing entity
or has data ready to be sent, it issues a call to the NB3DFFT library. The library
through shared OpenMP variables ensures that the scheduler thread learns about the
communication that needs to be done and does it. This thread-based approach utilizes
modern CPU features in a convenient way. Owing to the widespread availability
of multi-tasking on personal PCs and Laptops, they are designed to minimize the
computational cost that a context switch causes, and often have more logical cores
than FPUs. This allows for efficient switching between threads or even applications.
While not desirable for the actual calculation of fluid dynamical problems, the multi
threading can efficiently utilize these features available at no cost.

Similarly, arriving at a position where data from another computing entity are
needed to continue, the call to the Message-Passing Interface is replaced by a status-
request call to the NB3DFFT library. If the data is not ready to be transposed, the
code can continue doing other things and come back to the status request later. This
is a major advantage of the queue-based approach of the library which allows to
minimize phase (3) in Fig. 4.1.

4.2.3 Re-Organization of the Algorithm

The algorithm’s order of execution is reorganized here to optimally benefit from the
NB3DFFT library. Given that the scheduler thread runs in the background and carries
out transpositions, the aim of this re-organization is clear: The algorithm needs to
be split in parts that only do either communication or computation. A derivative’s
calculation consists of four steps:

(a) The data are globally transposed such that data belonging to a single line along
which the derivative is being calculated reside in a single computing entity.

(b) The derivative is being calculated.
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(c) The data are being transposed back such that every computing entity holds the
data for the physical part of space that it is assigned to.

(d) The update of the tendency in physical space—the actual reason for which the
derivative is being calculated.

While steps (a) and (c) contain transpositions that are carried out by the scheduler
thread in the background, steps (b) and (d) are purely local calculation steps relying
on the instantaneous availability of the transposed data. An order of execution is
desirable in which steps (a) and (c) are initiated as early as possible and steps (b) and
(d) as late as possible.

The starting point here was a scheme in which all of the three are done right
after each other. An alternative is to first start all global transpositions, then do all
calculations that do not require global transpositions, and finally do the calculations
that require transposed data. This would require a severe increase of the RAM since a
field that is being transposed while the calculations continue needs two or more fields
in the RAM—one for the original field (it may not be modified until the operation is
completely finished) and one for the result. I present here a more memory-efficient
method that overlaps calculations of a few but not all derivatives.

Such amemory-efficient layout for the computation of advection and diffusion for
the four prognostic variables u, v,w and a scalar is shown in Fig. 4.2. The equations
evaluated are

utendency = O1(u)+ O3(u)+ O2(u)

vtendency = O1(v)+ O3(v)+ O2(v)

wtendency = O1(w)+ O3(w)+ O2(w) (4.5)

s1tendency = O1(s1)+ O3(s1)+ O2(s1)

transposition : y ↔ x y ↔ z none

where Oi (ξ) = ui D
(1)
i ξ + D(2)

i ξ is the Burgers operator. The Coriolis and Buoyancy
terms can be evaluated before, as part of the sketched operations, or immediately
afterwards. The pressure gradient term can only be calculated once the intermediate
velocity field is known, i.e. after the tendencies for u, v and w have been updated.

4.3 Performance Measurements

The scheme described in the previous section was developed on the 2048-core intel
cluster thunder at theMax Planck Institute for Meteorology and then ported to the
294, 912-core Tier-0 supercomputer juqueen at Jülich Supercomputing Centre.
On both systems the scaling of the non-blocking communication (NBC) scheme
and a fully blocking communication (FBC) scheme was evaluated. I present here
a comprehensive scaling study that has been undertaken to demonstrate the value
of this scheme to current and future turbulence simulations on the supercomputer
juqueen.
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Fig. 4.2 Schematic illustrating an efficient design for an algorithm that overlaps communication
and computation with a reasonable amount of memory-overhead (here, the four buffers cb1–cb4 for
the communication have to bemade available on top of thememory needed by the theworker thread).
A dashed horizontal line signalizes a call to the NB3DFFT library. The buffer cb1 is utilized for a
more efficient calculation of the vertical (Oy) derivatives. Initialization of the threads and library is
not shown
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4.3.1 Performance Metrics: Strong and Weak Scaling

Let T s
n be the time to once calculate the right-hand side (i.e. advection, diffusion,

pressure, buoyancy and Coriolis terms) for a problem of size s with n computing
entities. There are two measures to assess quantitatively the parallel performance of
a computer code, strong and weak scaling.

For a strong-scaling study, the number of computing entitiesn is increased to tackle
a problem at given size s0. Ideally, a scaling study is carried out with respect to a
serial case. This is not possible here: simulations have sizes that do not fit into a single
CPU (Sect. 4.1). Consequently, the smallest amount of computational resources n0
that provides enough memory for the respective case, is used as a reference for the
strong-scaling studies.

The speed-up Sstrong and parallel efficiency εstrong are then calculated as

Sstrong,n0,s0(a) = T s0
n0

T s0
a·n0

, εstrong,n0,s0(a) = T s0
n0

T s0
a·n0

1

a
. (4.6)

Optimal strong scaling is achieved if Sstrong,n0,s0(a) = a ⇒ εstrong,n0,s0(a) = 1. In
some cases, it may even occur that Sstrong > a and consequently εstrong > 1. This is
the case when the code, mostly due to better utilization of memory and caches, runs
more efficiently on a larger number of cores.

For aweak scaling study, commonly the number of computing entities is increased
proportionally to the problem size such that the computational load per computing
entity stays approximately constant.Once the constraint of solving identical problems
within a scaling study is dropped, one can, however, take the concept a step further
and calculate the weak scaling with respect to the smallest simulation available.
This makes data across weak and strong-scaling studies comparable, and is still a
kind of weak scaling. This approach is used here to provide a performance reference
based on the single-node-board performance for those cases which—due to memory
constraints—cannot be run in a single node board. The speed-up Sweak and parallel
efficiency εweak are calculated as

Sweak,n0,s0(a, b) = bT s0
n0

T b·s0
a·n0

, εweak,n0,s0(a, b)
bT s0

n0

aT b·s0
a·n0

. (4.7)

A classical weak scaling is recovered if a = b.
Generally, weak scaling is considered to be achieved easier than strong scaling.

This may be explained with the number of computing entities involved in a commu-
nication increasing as n2 and the amount of data which has to be sent—commonly
also increasing as n2, or sometimes even stronger. When global transpositions of
full fields are involved, this is not the case: Given a particular problem size, the
amount of information that has to be sent per core decreases approximately as n0/n.
If the global communication time is not bound by the latency (set-up of communica-
tion channels, initial calls to library, etc.) but by the actual sending of data over the
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network, the time spent in communication might decrease with increasing number
of computing entities. In particular, this is the case when the computational load per
core is very large, which is the case for the strong-scaling reference cases.

4.3.2 Performance on the Supercomputer juqueen

Overhead of the NBC scheme. The initialization of threads, calls to the NB3DFFT
library and synchronization between the scheduler and worker threads require com-
putational time; this time is an overhead specific to the NBC scheme. While the
absolute measurement of this time fraction requires substantial modification of the
computer code, the performance degradation in the smallest case gives an indication.
The NBC scheme overall runs 19% slower than the FBC scheme for the case with
220 = 1G collocation points (Table4.1). This configuration does not benefit a lot
from the overlap, which is likely due to the relatively short time needed to commu-
nicate data: If a simulation fits in a single node board (n = 1) no ‘expensive’ hops
to different node boards or even mid-planes/racks are necessary which makes the
communication rather cheap.

This degradation of performance in connection with the NBC scheme only occurs
for simulations within one or two node boards. In all other cases, the NBC scheme
speeds up the simulations—by up to 40% depending on the configuration (lowest
part of Table4.1). Given that simulations of sizes smaller than 4G are commonly
not carried out on juqueen, the FBC scheme is disregarded for future work on this
supercomputer.

Strong scaling. The strong scaling for four cases ranging from 1 × 230 (1G) to
64 × 230 (64G) collocation points is shown in Fig. 4.3 and Table4.1 for both the
NBC and FBC schemes. For the cases with a size of 1G and 4G the strong scaling is
significantly improved by the NBC scheme. From 2 to 8 node boards, the scaling is
super-linear for the smallest case. This is likely due to cache-effects andgives a double
benefit: On the one hand, simulations require less real time to finish; on the other
hand, they require less computing time and electricity to be calculated. (It is reminded
that the reference for this strong scaling is slower by about 20%. Nonetheless, this
provides evidence for a very efficient implementation of the NB3DFFT library and
its interplay with the current algorithm.)

For the larger cases 4 and 16G the strong scaling efficiency (but not the actual
wall-clock-time) of the FBC scheme is better. This is, however, mainly due to the
very bad performance of the reference simulations which run 11% respectively 30%
slower (Table4.1). Here, the benefit of the NBC scheme is already hidden in the
reference case and deems the inferior scheme to appear more efficient which is a
general problem of strong scaling investigation: optimized reference cases are always
penalized by a worse scaling. Nonetheless, in absolute terms, the NBC scheme is
faster for all simulations beyond a size of 2G.
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Table 4.1 Scaling and performance metrics on the supercomputer juqueen

NBC FBC

Problem size [2^30] 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Time per RHS [s]

32 Nodes 1 10,55 8,9

2 NodeBoards 2 5,19 10,40 4,70 9,50

4 NodeBoards 4 2,42 4,81 9,46 2,57 4,92 9,56

8 Nodeboards 8 1,28 2,61 5,11 9,86 1,43 2,94 5,77 11,16

1 Midplane 16 0,64 1,37 2,63 5,32 10,57 0,64 1,52 2,95 5,91 11,84

1 Rack 32 0,37 0,69 1,68 3,80 6,97 11,8 0,40 0,83 1,84 3,92 8,84 12,7

2 Racks 64 0,26 0,51 0,78 1,72 3,76 7,20 16,72 0,31 0,67 0,96 2,04 4,14 8,1 24,04

4 Racks 128 0,23 0,38 0,47 0,85 1,96 3,98 7,61 0,31 0,64 0,61 1,08 2,06 4,53 9,03

8 Racks 256 4,72 5,52

Strong Scaling 

32 Nodes 1 1,00 1,00

2 NodeBoards 2 1,02 1,00 0,95 1,00

4 NodeBoards 4 1,09 1,08 1,00 0,87 0,97 1,00

8 Nodeboards 8 1,03 1,00 0,93 1,00 0,78 0,81 0,83 1,00

1 Midplane 16 1,03 0,95 0,90 0,93 1,00 0,87 0,78 0,81 0,94 1,00

1 Rack 32 0,89 0,94 0,70 0,65 0,76 1,00 0,70 0,72 0,65 0,71 0,67 1,00

2 Racks 64 0,63 0,64 0,76 0,72 0,70 0,82 1,00 0,45 0,44 0,62 0,68 0,71 0,78 1,00

4 Racks 128 0,36 0,43 0,63 0,73 0,67 0,74 1,10 0,22 0,23 0,49 0,65 0,72 0,70 1,33

8 Racks 256 0,89 1,09

Weak Scaling 

32 Nodes 1 1,00 1,00

2 NodeBoards 2 1,02 1,01 0,95 0,94

4 NodeBoards 4 1,09 1,10 1,12 0,87 0,90 0,93

8 Nodeboards 8 1,03 1,01 1,03 1,07 0,78 0,76 0,77 0,80

1 Midplane 16 1,03 0,96 1,00 0,99 1,00 0,87 0,73 0,75 0,75 0,75

1 Rack 32 0,89 0,96 0,78 0,69 0,76 0,89 0,70 0,67 0,60 0,57 0,50 0,70

2 Racks 64 0,63 0,65 0,85 0,77 0,70 0,73 0,63 0,45 0,42 0,58 0,55 0,54 0,55 0,37

4 Racks 128 0,36 0,43 0,70 0,78 0,67 0,66 0,69 0,22 0,22 0,46 0,52 0,54 0,49 0,49

8 Racks 256 0,56 0,40

Speed-up by NBC

32 Nodes 1 -19%

2 NodeBoards 2 -10% -9%

4 NodeBoards 4 6% 2% 1%

8 Nodeboards 8 10% 11% 11% 12%

1 Midplane 16 0% 10% 11% 10% 11%

1 Rack 32 8% 17% 9% 3% 21% 7%

2 Racks 64 16% 24% 19% 16% 9% 11% 30%

4 Racks 128 26% 41% 23% 21% 5% 12% 16%

8 Racks 256 17%

Upper table lists the computing time used for the evaluation of one Runge–Kutta sub-stage (right-
hand-side routine) in seconds. The two colored tables shows the strong-scaling and weak-scaling
efficiencies. Coloring of the data indicates performance; blue stands for a near-perfect or super-
linear scaling defined as ε > 95%; green stands for acceptable scaling (ε > 66%); red stands
for unacceptable scaling (ε < 66%). The lower table lists the computing time saved by the NBC
scheme. Bold numbers indicate saving>10%. The problem size in the header is given in Giga (230)
points
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(a) (b)

Fig. 4.3 a Strong-scaling speed-up Sstrong for the NBC (solid, filled dots) and FBC (dashed, open
dots) schemes. The range of acceptable performance degradation (strong scaling efficiency larger
than 2/3) is shaded by the respective color for each case. b Weak-scaling efficiency εweak with
respect to the case 1G run in 1 node board (512 MPI tasks, 1,024 OpenMP threads). The scaling
data are shown for four cases, ranging in size from 230 (1G) to 64×230 collocation points. The data
here cover set-ups from 512 MPI tasks (1,024 OpenMP threads) to 131,072 MPI tasks (262,144
OpenMP threads)

A drop in the strong scaling efficiency is observedwhen the number of node boards
increases from 16 to 32. The layout of an IBM Blue Gene/Q rack explains this: 16
node boards are always located within a single mid plane. On such a mid-plane,
communication among node boards does not go over the central network switches.
32 node boards are located within a single rack, and communication goes over the
central switches requiring more time.

Weak scaling. The weak scaling with respect to a reference case within a single
node obscures the comparison of performance less. It has only one reference case
and allows for fair comparison of the performance of simulations at different sizes
and using a different number of node boards. The weak scaling of the NBC scheme is
better for all cases that are considered here (Fig. 4.3b). The largest difference occurs
for the big simulations (>2G) on more than one rack. In fact, simulations on 2 and 4
racks are now so efficient that they are feasible. This was not the case with the FBC
scheme which has weak-scaling efficiencies around 50% for such big simulations
and is in absolute terms around 20–30% slower.

The biggest case (64G) was also tested on 8 racks (131,072 MPI tasks). While
the efficiency of both the NBC and FBC schemes is unacceptable for operational
simulations, it provides a prove of concept that the algorithm is suitable for problems
of this size. Optimizations regarding the mapping of processes and arrangement of
mid planes which are part of the job submission procedure on the juqueen system,
might yield significant performance improvements for the NBC scheme. Assuming,
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one could utilize the whole juqueen system, this would allow simulations with
as many as 256 × 230 collocation points which is a factor 25 more than in the
current largest set-up presented here. This would allow to increase the physical scale
separation by approximately a factor three to four with respect to the present highest
Reynolds number Re = 1000.
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Chapter 5
A Test Bed for the Numerical Tool

When simulating flows numerically, a validation of the tools is a necessary step.
Coleman and Sandberg (2010) suggest various ways to check a DNS code. To ensure
a correct implementation of the flow solver implemented here, it has been tested using
problems at various stages of complexity ranging from an ordinary differential equa-
tion via one- and two-dimensional laminar flow solutions to fully three-dimensionally
turbulent flows:

• an ordinary differential equation with known analytical solution (Sect. 5.1)
• a laminar solution for a non-stationary Ekman layer in one dimension (Sect. 5.2.2)
• a Taylor–Green vortex in two dimensions (Sect. 5.3)
• a turbulent solution for the Ekman layer in three dimensions (Sect. 5.4).

If available, solutions are compared against analytical ones or those of the explicit
solver which has been extensively tested for a number of flows ranging from wall-
bounded turbulence to free-shear flows and jets in two and three dimensions. In this
section, the tests of the SIRK3 scheme (cf. Chap. 3) are described. Similar tests have
been carried out for the explicit fourth-order, five-stage Runge–Kutta scheme but for
brevity are not discussed at the same level of detail here.

5.1 Behavior of the Semi-implicit Scheme
When Solving a Non-linear ODE

To study the behavior of the SIRK3 scheme, the non-linear ordinary differential
equation (ODE)

du

dt
= au + bu2; u, t ∈ R (5.1)
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Fig. 5.1 Errors of numerical solutions when compared to the analytical one. Thick solid lines show
the SIRK3 scheme. The dashed lines are a fully explicit three-stage Runge–Kutta scheme after
Williamson (1980). The thin dotted lines result from a first-order Euler-forward integration of the
equation. The red lines are for a purely non-linear problem (a = 0, b = 1), the black lines for a
purely linear one (a = 1, b = 0), and the green lines for the full equation with a = 0.5 and b = 1

is employed. For a, b = constant ∈ R, it has a known analytical solution. The linear
and non-linear contributions can be adjusted to the needs, to investigate the errors
for the explicit and implicit integration procedure separately (Fig. 5.1).

For the integration of Eq. (5.1), the SIRK3 scheme behaves as expected. For a
purely non-linear problem (red lines) the SIRK3 scheme behaves very similar to
the fully explicit Runge–Kutta scheme and time stepping errors decrease with order
three until machine precision is reached (around 20,000 time steps); it is only beyond
20,000 time steps—where the errors are of the order of machine precision—that the
errors differ; in this range, the error is quasi-random as it depends on the order
of execution (and potentially the machine and compilers if the implementation is
not fully conformal with the IEEE standard). For a purely linear integration, the
order of time integration drops to two (thick black line). When the full equation is
integrated, the errors from the integration of the non-linear part of Eq. (5.1) dominate
for larger time steps (number of time steps smaller than � 500); the convergence of
the time stepping scheme is of third order in τ . For smaller time steps (number of
time steps larger than � 1000), the error from integration of the linear part of Eq.
(5.1) dominates, and the order in τ drops to two. The dip in error around 500 time
steps results from a change of the sign of the error.
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5.2 Analytical Solution of Ekman Flow

5.2.1 The Stationary Laminar Solution

The solution of the stationary case presented here was originally derived by Ekman
(1905). He considered the following set of simplified equations for a two-dimensional
flow

∂U

∂t
= −∂π

∂x
+ f V + ν

∂2U

∂z2
− ∂uw

∂z
∂V

∂t
= −∂π

∂y
− f U + ν

∂2V

∂z2
− ∂vw

∂z
.

(5.2)

The turbulent flux of momentum uw—in analogy to molecular diffusion—can be
written as

uiu j = −νT

(
∂Ui

∂x j
+ ∂Uj

∂xi

)
. (5.3)

While in general νT is a function of the flow state and height above ground, Ekman
assumed ν + νT =: νE , where νE is a constant eddy viscosity. This assumption which
is the key to Ekman’s laminar solution, is the reason why—if appropriately non-
dimensionalized—this solution does not differ from the laminar one. The idealized
solution is then referred to as quasi-laminar flow. If the geostrophic balance (Eq. 2.9)
and stationarity are introduced, and one lets ξ := U − G1 + i(V − G2), the problem
reduces to the second-order complex linear boundary-value problem for ξ:

∂2ξ

∂z2
− i f

νE
ξ = 0 (5.4a)

ξ|z=0 = 0, lim
z→∞ ξ = G + i · 0 (5.4b)

where the boundary conditions represent a no-slip surface and geostrophic equilib-
rium in the free atmosphere. With U = R(ξ) and V = I (ξ), it follows

UE (z̃)/G = R(ξ) = (1 − e−z̃ cos(z̃))
VE (z̃)/G = I (ξ) = e−z̃ sin(z̃),

(5.5)

where z̃ := z/D, and D := √
2ν/ f . The solution (UE , VE ) = (U (z̃), V (z̃)) (Fig. 5.2)

is self-similar, i.e. it does not depend on any of the parameters D, f , ν or their non-
dimensional combination ReD .

http://dx.doi.org/10.1007/978-3-319-45044-5_2
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(a) (b)

Fig. 5.2 Hodograph (left panel) and wind components (right panel) for the quasi-laminar Ekman-
layer solution Eq. (5.5). In the right panel, the thick line depicts the spanwise velocity VE (z) and
the thin one the streamwise velocity component UE (z)

5.2.2 Temporally Evolving Solution

Once the Ekman solution (Eq. 5.5) is known, one can write any horizontally homo-
geneous velocity field as V (z, t) = VE (z) + V ′(z, t) with VE (z) a solution of Eq.
(5.5).

Applying this decomposition to ξ leads to the linear partial differential equation

∂ξ′

∂t
= −i f ξ′ + ν

∂2ξ′

∂z2
. (5.6)

with boundary conditions ξ′|z=0 = ξ′|z→∞ = 0 and an initial condition to be speci-
fied. The linearity of the system (5.6) implies

ξ̂′ solves (Equation (5.6)) ⇒ ∂ξ̂′

∂z
solves Equation (5.6). (5.7)

Hence, a family of non-trivial solutions (�n)n∈N0 to the boundary value problem
Eq. (5.6) is given by

�n(z, t) = ∂(2n+1)

∂z(2n+1)

[
e
− z̃2

4σ(t)2

√
1

σn(t)2

]
, n ∈ N0 (5.8)

for an appropriate choice of σ. Even though any derivative of �0 is a solution to Eq.
(5.6), only the odd ones fulfill the boundary conditions. The first three members of
the family of solutions �n are shown in the left panel of Fig. 5.3 at t = 0 with the
initial condition σi (0) = 1.

For n = 0, σ is defined through

(
z2 − 2σ2

0

) [
ν

δ2
− ∂σ2

0

∂t

]
= 0 ⇒ σ2

0(t) = f

2
t + σ0,0, (5.9)
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Fig. 5.3 a First three members �1, �2, �3 of family of solutions for ξ̂; b Poincaré sections of the
U ′(z, 2πn) for various n ∈ N

where σ0,0 ≡ σ0(t = 0) has to be specified. Hence, the solutions for the temporal
development of perturbations of the form �0(z, 0) to a quasi-laminar Ekman-flow
are

U ′(z̃, t) = − A0
√

2
δ(4σ0+ f t)3/2 z̃ exp

[
− z̃2

2(σ0+4 f t)

]
cos( f t)

V ′(z̃, t) = + A0
√

2
δ(4σ0+ f t)3/2 z̃ exp

[
− z̃2

2(σ0+4 f t)

]
sin( f t)

(5.10)

where A0 ∈ R. For σ0 > 0 in the limit t → ∞ the first member of the family of
solutions approaches the quasi-laminar steady-state solution (UE , VE ). Once σ0 is
specified, the level of maximum initial perturbation depends on time as z̃max (t) =√

f t + 4σ0. Perturbations propagate upwards and their magnitude is damped with
increasing time. This behavior is illustrated by the Poincaré sections taken at V ′(z) =
0 (⇔ t mod 2π = 0) that are shown in the right panel of Fig. 5.3. σ0 determines the
width of the initial perturbation: if σ0 = 0, it is singular in the sense that it collapses
to a Dirac-δ function.

5.2.3 Convergence of the Errors

The computer code has been set-up to solve the problem Eq. (5.6) in a horizontally
very small domain and using a vertical resolution that allows for the error in spatial
schemes to be close to roundoff. Around 10,000 mesh points in the vertical direction
are necessary to fulfill this requirement. The convergence of the r.m.s. error of the
solution when compared to the analytical solution derived above is shown in Fig. 5.4.
Due to the very low Reynolds number (Re = 2), the viscous error in this case is the
dominant source of inaccuracy and the convergence of the numerical scheme is
second-order down to machine accuracy. Due to the extremely fine vertical mesh
in the vertical direction, the stability criterion for the explicit solver is too strong to
compare this convergence order to that of the explicit scheme as all of the time steps
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used here are beyond the stability range of both the third-order–three-step and the
fourth-order–five-step Runge–Kutta schemes.

5.3 Two-Dimensional Taylor–Green Vortex

The Taylor–Green vortex is studied at the two Reynolds numbers 8π/10 and 8π ×
100. The results obtained in Mellado and Ansorge (2012) are reproduced using semi-
implicit time-stepping. Therefore, the Taylor–Green vortex in the two-dimensional
domain [0, 1] × [0, 0.5] is considered:

u1(x1, x2, t) = sin(2πx1) cos(2πx2) f (t), u2 = − cos(2πx1) sin(2πx2) f (t),

p(x1, x2, t) = 1

4
[cos(4πx1) + cos(4πx2)] [ f (t)]2

f (t) = exp
(−8π2Re−1t

)
.

At the higher Reynolds number Re = 8π2 × 100, the overall spatial accuracy of
the code is 4th order (Fig. 5.5). When the Reynolds number is decreased by a factor
of 1000 to Re = 8π2/10, diffusive errors come into play at the boundaries, and the
overall spatial accuracy reduces to 3rd order.

The overall convergence order in time is first order (Fig. 5.5b). The relative error
in pressure fields is two orders of magnitude larger than in the velocities u and v
(Fig. 5.5). The larger error in the pressure fields indicates that this degradation of
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Fig. 5.5 Convergence of the integration errors for the Taylor–Green vortex after t = 5 × 10−6

when changing the grid spacing (a) and the time step for a grid spacing of h = 1/768
≈ 1.3 × 10−3 (b)

order is a consequence of the series truncation in Eq. (3.22b) and does not contradict
results of the previous test in temporally evolving quasi-laminar Ekman flow. In this
laminar case, the dynamic pressure is constant throughout the entire flow, and errors
do not propagate.

http://dx.doi.org/10.1007/978-3-319-45044-5_3
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5.4 Three-Dimensional Turbulent Ekman Layer

For turbulent flow, no analytical solution—as it is the case with the previous test
cases—is known. To assess the correctness of the simulations consistency in them-
selves is checked, and they are compared with previous work. Data from simulations
with the explicit time stepping scheme at three different Reynolds numbers is used
here for a comparison with previous work.

Explicit 4th-order–5-stage Runge–Kutta scheme The hodographs in Fig. 5.6 are
for the series of simulations N500L, N750L and N1000L (Table 6.1) which cor-
responds to a 75 % reduction in viscosity. For case N500L it is shown in Mellado
and Ansorge (2012) that the agreement of the hodographs with data obtained from
Coleman et al. (1990) is very good. The dependency on Re is small, and it decreases
with increasing Re. In particular, the change from Re = 750 to Re = 1000 is much
smaller than that from Re = 500 to Re = 750. Concomitantly, a logarithmic layer
emerges as the scale separation between the outer and inner scales, i.e. the Reynolds
number, is increased. This dependency on the Reynolds number is also observed in
other studies (Coleman 1999; Spalart et al. 2008) and indicates the consistency of
the numerical method.

A more quantitative criterion is the wall friction velocity u� and its turning at the
surface α with respect to the geostrophic wind—a consequence of the interaction
between rotation and friction in Ekman flow. Since the seminal work of Coleman et al.
(1990), these observables (they are unknown a priori and hence not a parameter) are
commonly used to compare simulations of neutrally stratified Ekman flow; besides,

(a) (b)

Fig. 5.6 aHodograph.bStreamwise wind speed profile in semi-log space. Figure is for the neutrally
stratified cases N500L (red), N750L (blue) and N1000L (orange) according to Table 6.1. In (a),
the laminar case is shown as a black dashed line. The levels z+ = 15 and z− = 0.12 are marked by
dots in the hodographs to illustrate the increase of scale separation from Re = 500 to Re = 1000.
In (b), the viscous law of the wall (u+ = y+) and the logarithmic law u+ = κ−1log(y+) + A with
κ = 0.41 and A = 5.0 are shown as dashed black lines. As in the hodograph, the level z− = 0.12
is marked by a dot in the corresponding wind speed profile

http://dx.doi.org/10.1007/978-3-319-45044-5_6
http://dx.doi.org/10.1007/978-3-319-45044-5_6
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(a) (b)

Fig. 5.7 Dependency on Re of the wall friction velocity u� (a) and the turning angle α of the
surface wind with respect to G (b) for the neutrally stratified configuration. Data is also compared
with that available from other groups (Miyashita et al. refers to Miyashita et al. (2006); Coleman et
al. and CFS90 refers to Coleman et al. (1990); Coleman (1999); Spalart et al. (2008)). The dashed
lines show curves according to the higher-order theory derived in Spalart (1989). The best fit for
the available data is obtained with A = 5.9, B = 0.1 and C5 = −30 following the nomenclature of
Coleman et al. (1990). Statistical uncertainty is estimated for the ’current DNS’ from the variance
in the time series of the respective quantities

they also give a first estimate of dependency on the Reynolds number. Figure 5.7 com-
pares the values of u� and α in the simulations with the semi-empirical ‘prediction’
as well as previous work, and shows that the three cases are within the uncertainty
range of the data. For the current data (current DNS), the statistical uncertainties in
estimates of u� and α are estimated from the respective variance of their time series
and shown as error bars in Fig. 5.7.

SIRK3 scheme The SIRK3 scheme was tested successfully for idealized cases
(Sects. 5.1–5.3). For the turbulent case, the simulations with this scheme produce
an offset in the direction of the friction velocity of about 4◦. The reasons for this
offset were not investigated further since it turned out that—even for the highest
Reynolds number considered here, that is Re = GD/ν = 1000—it is not economic
to employ the SIRK3 scheme: The diffusion number is a less strong constraint on
the time step than the Courant number.
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Part III
Physics



Chapter 6
The Neutrally Stratified Ekman Layer

The neutrally stratified Ekman layer—used as initial condition and reference when
studying effects of stratification (Chaps. 7 and 8)—is discussed in this chapter. To
better differentiate the effect of stratification, the degree of Reynolds-number inde-
pendence is ascertained in Sect. 6.1 with simulations at Re = {500, 750, 1000}
(Table 6.1; non-dimensional quantities are defined in Eqs.2.11, 2.13a on pp. 17,
19). I demonstrate that these Reynolds numbers are well within the turbulent regime
and sufficiently high to clearly distinguish between an inner and outer layer. The
duality of available high-resolution data in time and space allows an estimate of the
convergence ofmeasurements with single-point probes (Sect. 6.2). This investigation
unveils the presence of motions on large time scales in accordance with recent work
on channel flow simulations.

A particular mode of large-scale organization in Ekman flow is external inter-
mittency in the outer layer. This external intermittency, a property intrinsic to open
boundary layers and a key difference of Ekman flow when compared to channel
flows, is quantified in Sect. 6.3. The lower part of the externally intermittent region
coincides with the logarithmic layer, and it is demonstrated here that external inter-
mittency impacts on the logarithmic profile for the mean velocity (Sect. 6.3.3). When
this impact is taken into account, a logarithmic profile for the mean velocity fits the
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Table 6.1 Set-up of the simulations; Lxy is the domain size in the horizontal directions, Lz in the
vertical direction, �(x, y)+ is the resolution in the streamwise and spanwise directions Ox and Oy

data over a three-times deeper range compared to when it is not taken into account.
In this overlap region where the velocity profile conditioned to turbulent patches
is logarithmic, spectral analysis and visual inspection (Sect. 6.4) of the flow fields
unveil both a large-scale structure originating from the outer layer and small-scale
hairpin vortices stemming from the buffer layer.

6.1 Conventional Statistics

6.1.1 Global Measures

Since the seminal work of Coleman et al. (1990), the wall friction velocity u� as well
as the turning angle α of the surface stress with respect to the geostrophic wind G
are commonly used to compare simulations of neutrally stratified Ekman flows and
provide a first estimate of their dependency on Re. Figure5.7 compares the values
of u� and α with the semi-empirical theory of Spalart (1989) as well as previous
work, and shows that they are within the uncertainty range of the data for the three
cases considered here. It illustrates anO(1) variation in those global parameters with
respect to an O(10) change in viscosity.

Further support for the relatively weak dependency on Re is obtained by the
values of the vertically integrated turbulence kinetic energy (TKE, e) and the viscous
dissipation rate (ε) shown in Table6.2 for three Reynolds numbers, where e and ε

are defined as follows:

http://dx.doi.org/10.1007/978-3-319-45044-5_5
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Table 6.2 Global statistics as a function of the Reynolds numbers for the neutrally stratified con-
figuration

Case: N500L N750L N1000L

u�/G 0.0618 0.0561 0.0531

α 25.5 21.0 19.2

δ95/δ 0.668 0.650 0.631

Ret 203 407 655

Reτ = δ+ 478 898 1399

f G−3
∫ ∞
0 edz 2.18 × 10−4 1.64 × 10−4 1.44 × 10−4

f u−3
�

∫ ∞
0 edz 0.0570 0.0521 0.0511

G−3
∫ ∞
0 εdz 1.31 × 10−3 1.34 × 10−3 1.32 × 10−3

u−3
�

∫ ∞
0 εdz 5.53 7.58 8.85

The integrals are performed over the entire vertical range of each case. δ95 refers to the level at

which
√

〈uw〉2 + 〈vw〉2 = 0.05u2� , e and ε as defined in Eq. (6.1). Ret := maxz
{
e2/ (νε)

}
is a

Reynolds number introduced for isotropic turbulence and Reτ as defined in Eq. (2.12)

e :=
〈
u′
i u

′
i

2

〉
(6.1a)

ε := ν

〈
∂u′

i

∂x j

(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)〉
. (6.1b)

The reader is reminded that 〈·〉 and (·) denote the average over a horizontal plane and
the time respectively. The viscous dissipation rate is foundhere to scale independently
of Re when normalized with the geostrophic forcing G whereas the energy does so
approximately when normalized with u2�. This further illustrates only slight changes
in the organization of the flow while the viscosity varies by a factor of four. In
summary, these statistics indicate that despite the comparatively low Re, the system
is well within the turbulent regime.

6.1.2 Vertical Profiles

Velocity hodographs (Fig. 5.6a) also illustrate that the dependency on Re is relatively
small; in particular the change from Re = 750 to Re = 1000 is much smaller than
the change from Re = 500 to Re = 750. At the wall and in the inner layer (below
z+ = 100) the inviscid scaling of ε is recovered (Fig. 6.1b). In the outer layer, the
dissipation decreases as (z+)−0.5, and when expressed in wall-units the layer over
which this happens grows as δ+. Beyond the inner layer, ε+(z+) is not quite self-
similar—the inner scaling is inappropriate. If instead the outer scaling ε−(z−) is used,
self-similarity independent of Re is also observed in the outer layer (0.1 < z− < 1,
Fig. 6.1).

http://dx.doi.org/10.1007/978-3-319-45044-5_2
http://dx.doi.org/10.1007/978-3-319-45044-5_5
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(a) (b)

Fig. 6.1 Normalized dissipation for the series of simulations N500L (red), N750L (blue) N1000L
(orange). Panel a shows the height z+ normalized with the wall unit, panel b shows the height
z−normalized with the boundary layer depth scale δ

From scaling arguments it was concluded that the rotation of wind does not impact
properties in the surface layer other than by constant, i.e. height-independent, shift
of direction with respect to the free atmosphere (Blackadar and Tennekes 1968;
Tennekes 1973). Hence, provided a high enough Re, the surface layer of an Ekman
flow can be treated as that of a channel flow, and a logarithmic wind profile develops.

Attempts have been undertaken to obtain the logarithmic law and associated con-
stants for Ekmanflow atReynolds numbers as high as Re = 2828 (Spalart et al. 2008,
2009). The slope of the velocity U+ is approximately constant around z+ = 30 for
the three Reynolds numbers considered here (Fig. 5.6b); this agrees with Coleman
(1999) and Miyashita et al. (2006). In accordance with Tennekes (1973), the height
of departure from the logarithmic law for the three cases coincides with the height at
which the velocity begins to turn significantly (seemarkers at z− = 0.12 in Fig. 5.6b).
This logarithmic variation supports the analogy with channel flows, which have been
studied in great detail. I will show later how and to what extent the rotation and ver-
tical asymmetry of the flow nonetheless impact on statistics inside the logarithmic
layer (Sect. 6.3.3).

Beyond the mean profiles, similarity with channel flow in the inner layer is also
found in the TKE budget terms as confirmed by Fig. 6.2a. Irrespective of Re, the
production of TKEpeaks in the buffer layer, around z+ = 12, and so does the removal
by turbulent transport. At the wall, all energy is provided by diffusive downward
transport of energy that dissipates locally. The upward transport of TKE away from
the production region is caused by turbulent convection. Above z+ = 30, the TKE
budget is dominated by a balance between production and dissipation. Contributions
to the TKE budget in the outer layer, normalized such that at any level the sum of
their squares equals one, are shown in Fig. 6.2b. The change from the production-
dominated to the transport- dominated regime, both balanced by viscous dissipation,
occurs at z− � 0.5. This is about 20% lower than in a non-rotating boundary layer

http://dx.doi.org/10.1007/978-3-319-45044-5_5
http://dx.doi.org/10.1007/978-3-319-45044-5_5
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(b)(a)

Fig. 6.2 a Budgets of the evolution equation for e in the inner layer of the cases N1000 (solid)
and N500, N750 (opaque). Circles show data from channel flow (Pope 2000, Fig. 7.34, p. 314).
b Relative contribution in the outer layer. The terms are normalized with their sum of squares at
each height

(Pope 2000, Fig. 7.34), andmight hint at the fact that the outer scale δ has to be adapted
by an order-unity constant (possibly δ95/δ ≈ 2/3) when quantitatively comparing
Ekman flow to non-rotating flows.

6.2 Local Versus Ensemble Statistics

In the above sections of this chapter, only data averaged horizontally over the whole
computational box have been discussed.Not only are such data conveniently obtained
from numerical simulations (the storage of the full computational domain is neces-
sary for technical reasons) but also does the ergodicity assumption imply that these
averages converge to the ensemble average in a sufficiently large box. On the con-
trary, in field observations, it is hardly possible to obtain spatially resolved data with
an accuracy sufficient to process turbulence quantities. (Significant advances have
been made very recently in obtaining spatially resolved data at a quality that is suffi-
cient for the investigation of turbulence properties (Träumner et al. 2014).) Instead,
virtually all studies on physical aspects of the planetary boundary layer resort to
the processing of time signals mostly obtained from towers at fixed locations. The
interpretation of turbulence signals from such tower-data relies on the stationarity of
the time signal and Taylor’s hypothesis (Taylor 1938).

Taylor’s hypothesis is essential if length scales are estimated from single-point
probes. It postulates: In flows where the turbulence intensity is small in comparison
with the mean flow, the signal obtained from a fixed-in-space probe can be converted
to a spatial measurement via a convection velocity. The presence of large-scale tur-
bulent motion calls this into question (del Àlamo and Jiménez 2009; Moin 2009).
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A second problem with relation to measurements at fixed locations is the non-
stationarity of external parameters; external in this context refers to external to turbu-
lence as described by the Navier–Stokes equations in Chap.2—for example a daily
cycle, synoptic perturbations or micro-physical processes. A convenient way around
the problem of non-stationarity is the idea of a scale separation between external
scales and internal ones. This concept of a scale separation between temporal and
spatial scales of external parameters and the turbulence itself was introduced by
Van der Hoven (1957) as the spectral gap. While this concept is of indubitable utility
for theoretical and conceptual work, both high-resolution measurements and also
recent LES (Schalkwijk et al. 2015) call into question to what degree this scale sep-
aration actually exists. A whole research community is investigating the so-called
meso-scale or gray-zone regime where turbulence and large scales are expected to
interact (Wyngaard 2004). While the motivation of this research is mainly a quench-
ing of the spectral gap from its large-scale end, onemay ask the question:What about
the lower end of this gap? In fact, recent work in fluid dynamics has proven the exis-
tence of very-large-scale motions in turbulence (del Àlamo and Jiménez 2003, also
Sect. 6.4). Also in the planetary boundary layer, low-frequency signals in the vertical
velocity have been observed (Ouwersloot et al. 2009). These scales are inherent to
turbulence, and as such do not depend on external forcing.

A time-resolved probing as introduced in Sect. 2.3.2 is employed here to estimate
how these large-scalemotions impact the turbulence signal of a single-point probe and
its convergence to the ensemble average. While it does not eliminate problems of the
understanding of phenomena at the large-scale end of the spectral gap, this analysis
is potentially useful in the interpretation of turbulence measurements: It may give
quantitative hints as to howmuch turbulent flux is actually lost by the common time-
slicing of field measurements. The subsequent analysis is tightly related to a spectral
analysis of the flow and also structure functions of the turbulent flow (Finnegan and
Kaimal 1994); the way of presenting data here is chosen as in the author’s opinion
it represents data in a very accessible way and can facilitate a discussion on these
issues between fundamental turbulence research and applied meteorology.

6.2.1 Data Analysis Procedure

I investigate in the following, how well the average over a finite time at a fixed
location converges to the ensemble average.1 That is: Under what circumstances,
and to what degree of accuracy, is

〈x(z)〉 ∼ xi (z)
T

(6.2)

1The same notation is used for spatial and ensemble averages. In general, this only holds for the
expected value, but not for individual realizations. For large computational boxes, however, the
ensemble and horizontal averages are identical as a consequence of the ergodicity of the flow.

http://dx.doi.org/10.1007/978-3-319-45044-5_2
http://dx.doi.org/10.1007/978-3-319-45044-5_2
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true? Here, x(z) is some local observable, and xi (z)
T
denotes the average over a

period of time T of a single-point probe at height z above the horizontal location ri
(Sect. 2.3.2). While the expected value of the right-hand side of Eq. (6.2) is identical
to the ensemble average, individual realizations of this right-hand side need not
coincide with the ensemble average. The spatial separation of individual realizations
by approximately one boundary-layer depth scale δ95 allows us to consider them
independent realizations such that a standard deviation among the towers can be
computed:

σx(z)(T ) =
√√√√ M∑

i=1

(
xi (z)

T − 〈x(z)〉
)2

(6.3)

where T ∈ R is the averaging period, and M ∈ N is the number of towers available.
Assuming M is large enough, and individual samples are sufficiently de-correlated,

in space σx(z)(T ) is the expected error of xi (z)
T
as a representation of 〈x(z)〉. For

any time-discrete random process R over N, it is σR(T ) ∝ T−1/2.

6.2.2 Convergence of local estimates to the ensemble mean

The present data indicate a rather slow cessation of the standard error in single-
probe estimates when the averaging period increases, pointing at the necessity for

(b)(a)

Fig. 6.3 Expected error in an estimate from a single-point probe as a function of the averaging
period (case N1000L). Fluxes are normalized by u2� such that the error is relative to the surface
friction;U, V,W are normalized by the geostrophic wind, the (passive) scalar is normalized by the
bulk difference, and the pressure by the geostrophic pressure gradient.Panel a shows convergence at
the lower end of the surface layer (z− = 0.01with δ the boundary layer depth).Panel b, (z− = 0.10)
shows the overlap (logarithmic) region between inner and outer layer

http://dx.doi.org/10.1007/978-3-319-45044-5_2
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(a) (b)

Fig. 6.4 Standard deviation multiplied by the square root of the averaging time and normalized by
the standard deviation at T = f −1:

√
Tσ(T )/σ (1). Panel a shows convergence at the lower end of

the surface layer (z− = 0.01), panel b, (z− = 0.101) the overlap (logarithmic) region between inner
and outer layer. Data are shifted along the vertical axis for better visibility. Solid straight colored
lines correspond to a hypothetic and densely sampled random process with variance σ(1) = 1.
Different line styles correspond to a different sampling rate in time where the first value of each
line is twice the sampling rate in time

long averaging intervals—even very close to the surface (Fig. 6.3). When the aver-
aging period approaches one eddy-turnover time (which is easily on the order of
20min to an hour under atmospheric conditions) the error in the mean velocity in
the lower surface layer (z− = 0.01) is 2% of the free-stream velocity magnitude.
While this is acceptable given the precision of flux measurements in field conditions,
short averaging periods, for instance when only a quarter of the eddy-turnover is
covered, can easily yield errors of 10%. Also for the vertical velocity, it is on the
order of 1% which is interesting with respect to tilt corrections commonly carried
out for SONIC anemometers where the local coordinate system is oriented so as to
obtain zero vertical velocity on average; such errors propagate strongly into other
velocity components. At the larger end of sampling intervals, it is σ ∝ T−1/2 (for
T > 0.5/ f , Fig. 6.3), i.e. the process behaves like a random process, that is, decor-
related in time. These deviations from the square-root decay of the standard error
stick out more clearly when the data is plotted to compensate for this decay as in
Fig. 6.4. Deviations from a random signal for T f < 0.5 illustrate the memory of the
turbulence signal. As such, these deviations are a means to quantify the memory’s
impact on measurements in the surface layer. This structure occurs at a time scale
T f � 0.1 − 0.3 corresponding to a wave length (using Taylor’s hypothesis with a
convection velocity of G = u�/0.0529 for the case N1000L) around 2 − 6δ.

While errors in the mean variables are random, the estimation of fluxes suffers
systematically—they are underestimated since an error in the mean profile due to
fluctuations always decreases the fluctuation estimate based on the erroneous mean
value. The fluxes have shorter de-correlation times than the mean values as seen
from an earlier change to the power-law decay in Fig. 6.3, which sets in already for
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Fig. 6.5 Expected value of the turbulent flux estimated from a single-point probe as a fraction of
the ensemble mean turbulent flux at various heights.Upper part shows streamwise Reynolds stress,
lower part shows vertical Reynolds stress

averaging periods T f � 2 × 10−3 compared to T f � 2 × 10−2 for the streamwise
and spanwise velocities. The bias in the fluxes behaves very similar to the error in
the mean values such that the flux estimate from a single-point probe increases with
the length of the averaging interval (Fig. 6.5). The bias is on the order of 10% when
averaging over one tenth of the inertial period, and it decreases to around 1% for an
averaging period of length T f ≈ 1.

6.3 External Intermittency and Its Impact in the Surface
Layer

6.3.1 Definition of external intermittency

The occurrence of large-(time)-scale motions demonstrated in the above Sect. 6.2
is another similarity of the surface layer of Ekman flow with that of channel flow.
Despite the qualitative and quantitative agreement with channel flows in many other
statistics (Sects. 6.1.1 and 6.1.2), Ekman flow is not bound by an upper solid wall,
i.e. it is an external flow. For the non-rotating configuration, Jiménez et al. (2009)
find that the outer flows of boundary layers and channels are intrinsically different.
It is hence expected here that the outer layer of Ekman flow differs from that of both
channel flow and a non-rotating boundary layer. In the outer layer of Ekman flow,
the wind rotates with height, and non-turbulent fluid is entrained into the boundary
layer. This entrainment causes the coexistence of strongly vortical patches adjacent
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to much less vortical ones in the outer layer, a property termed external intermittency
(Chap.1).

External intermittency is widely studied for non-rotating boundary layers since
the seminal work by Corrsin and Kistler (1955). They introduce the intermittency
function

γ (z) := 〈H(ω2 − ω2
0)〉, (6.4)

whereω is the vorticity, H is the Heaviside function, and 〈·〉 denotes averaging along
planes and in time. γ (z) is the fraction of the domain at a given height z exceeding a
threshold of enstrophy ω0, and γ (z) is known to be a useful measure of the turbulent
area fraction in the outer part of external flows (Kovasznay et al. 1970).

6.3.2 A Vorticity Source in the Outer Layer

InFig. 6.6a the intermittency functionγ (z) is shownvarying the thresholdωthresh from
0.2 to 10% of the maximum enstrophy within the domain. In other external flows,
the enstrophy often drops by three or more orders of magnitude at the turbulent–
non-turbulent interface (Kovasznay et al. 1970; Bisset et al. 2002; Mellado et al.
2009), which deems γ (z) independent of the choice of the threshold ωthresh within
a certain range. In the present case of Ekman flow, however, γ strongly depends on
this threshold. The much less pronounced drop in enstrophy at the turbulent–non-
turbulent interface is not a low-Reynolds-number effect, but rather a fundamental
property of Ekman flow caused by the rotation of the reference frame and distin-
guishing it from non-rotating configurations.

The vorticity equation for Ekman flow reads as

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2u + 2(� · ∇)u + 2(u · ∇)� (6.5)

whereω := ∇ × u and� is the planetary rotation. It is readily seen that the planetary
rotation � constitutes a source term in this budget, and rewriting Eq. (6.5) in tensor
notation, one can use the f-plane approximation to replace 2� ≡: 2 f êz :

∂ωi

∂t
+ u j

∂ωi

∂x j
= ω j

∂ui
∂x j

+ ν
∂2ωi

∂x2j
+ f

∂ui
∂z

. (6.6)

Compared with the non-rotating reference frame, there is the additional source f ∂zui
representing vortex stretching of planetary vorticity by a vertical gradient of stream-
wise velocity. This term is also present in the enstrophy equation:

http://dx.doi.org/10.1007/978-3-319-45044-5_1
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1

2

dω2
i

dt
= ωi

∂u jωi

∂x j
+ 1

2
ν

[
∂2ω2

i

∂x2j
− 2

(
∂ωi

∂x j

)2
]

+ f ωi
∂ui
∂z

. (6.7)

In the absence of vorticity, according to Eq. (6.6), the sign ofωi becomes that of f ∂zui
making the last term of the right-hand side of Eq. (6.7) a source of enstrophy. This
means that in the presence of evenweak velocity gradients in the irrotational region of
Ekman flow, the stretching and tilting of planetary vorticity generate mean vorticity
and vorticity r.m.s. at a rate proportional to the velocity gradient ∂zui and the Coriolis
parameter f . At some level of vorticity this process is balanced by dissipation; until
this happens, vorticity is accumulated in the non-turbulent part of the boundary layer
causing a background enstrophy that smears out the jump in enstrophy magnitude
between turbulent and non-turbulent parts when compared to other (non-rotating)
flows. The Re-independence of 〈u(z)〉 (cf. Sect. 6.1.2) in the outer layer suggests
that the term f 〈ωx 〉∂z〈u〉 scales inviscid, and this mechanism is independent of the
Reynolds number. The inviscid scaling is indeed manifest in the small sensitivity of
γ (z) to Re shown in Fig. 6.6b. It is concluded that this vortex tilting, irrespective of
Re, is a fundamental mechanism in Ekman flow rendering the outer, non-turbulent
layer different from non-rotating external flows.

Even though the vortex-tilting mechanism discussed above scales inviscid, it
deems the choice of a vorticity threshold delicate.ω0 = ωrms(δ), the r.m.s. of vorticity√

〈ω′2〉 at z = δ is chosen here as reference vorticity for the turbulent–non-turbulent
distinction for three reasons. First, this level—according to classical definitions of
the boundary-layer height such as δ95 (Table6.2)—is well outside the part that is con-
sidered turbulent. Second, it is 〈uiui 〉 ∝ z−4 for 0.75 � z− � 2 (not shown), which
is a signature of potential flow aloft a turbulent boundary layer (Phillips 1955). Third,

(a) (b)

Fig. 6.6 a Intermittency factor versus height varying the intermittency threshold by several orders of
magnitude (caseN1000L)b Intermittency factor versus height for (caseN500L–red and N1000L–
orange) where the thresholdω0 expressed in terms of the vorticity r.m.s. at z = δ is varied by a factor
of 4 (note that the variation in Re from 500 to 1000 also corresponds to a variation of ν by a factor
of 4)
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the resulting profile γ (z) (Fig. 6.6) is similar to that found in non-rotating boundary
layers (Kovasznay et al. 1970).

6.3.3 A Modified Logarithmic Law for the Mean Velocity

The definition of a discriminator between turbulent and non-turbulent regions of the
flow allows for the use of conditional statistics (Sect. 2.3.1). It enables a separation
of turbulent from non-turbulent contributions to bulk quantities of the flow which is
useful for a process-oriented study of the flow based on fundamental principles. Such
a separation is important, in particular in the outer layer where the variation of mean
properties between turbulent and non-turbulent patches can contribute significantly
to the variances (Pope 2000, Eq. (5.306)). (The casewhere the non-turbulent partition
of the flow extends down to the surface layer is considered in Chap.8.)

The logarithmic law is based on a similarity argument for the vertical gradient of
stream-wise velocity in the surface layer which is often expressed as

∂U+

∂z+ = 1

κz+ (6.8a)

(cf. Prandtl 1961; Von Kármán 1930; Zanoun et al. 2003). Given a velocity profile,
κ can be estimated as

κ̂diff = ∂ ln z+

∂U+ . (6.8b)

Such an estimation of κ poses challenges beyond the availability of data at only
moderate Reynolds number (Spalart et al. 2009). The main issue when estimating
κ directly is a strong decline from κ(z+ � 50) � 0.42 to κ � 0.38 at the upper end
of the logarithmic layer. Spalart et al. (2008) proposed that a shifted origin for the
logarithmic law yields a much better fit, but rejected this hypothesis later (Spalart
et al. 2009). A possible physical interpretation of this dip is the effect of the super-
geostrophic wind maximum in Ekman flow located around z− ∼ 0.2 (cf. Fig. 5.6),
which corresponds to z+ ≈ 300 for the Re achieved here. Another possible reason is
that in this range of heights, the flow is externally intermittent—a fundamental differ-
ence to channel flow for which the law was originally derived. Within non-turbulent
sub-volumes of the flow, the application of a logarithmic law is not meaningful.

In a laboratory context, with regard to atmospheric measurements, and when it
comes to the parameterization of mean-velocity profiles, the integrated form of Eq.
(6.8a) is often more practical: Integration of Eq. (6.8a) over z+ yields

U+ = 1

κ
ln z+ + A0, (6.9a)

and allows to locally estimate κ as

http://dx.doi.org/10.1007/978-3-319-45044-5_2
http://dx.doi.org/10.1007/978-3-319-45044-5_8
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Fig. 6.7 Deviation of the estimates for the von-Kármán constant based on the optimal value for the
range 80 < z+ < 160 (cf. Table6.3). Estimates κ̂int based on the integral formulation (Eq.6.9a) are
shown in black, estimates κ̂diff based on the differential formulation in red. Thick, dashed lines are
based on averages conditioned to turbulent patches (U |turb) and thin solid lines show conventional
averages (U )

κ̂int = ln z+

U+ − A0
. (6.9b)

As a consequence of the integration, Eq. (6.9b) includes the additional unknown
parameter A0 representing the lower boundary condition for the logarithmic layer.
While A0 is a physically relevant and geometry-related parameter for the mean
velocity profile, it is unrelated to the fundamental problem of determining the von-
Kármán constant. We estimate hereA0 together with κ from a least-square fit of the
velocity profiles versus the ideal logarithmic profile (Eq. (6.9a)). By construction,
this approach also yields an estimate for the optimal value of κ which is consistent
with the differential formulation (Eq.6.8a).

Taking into account external intermittency. The effect of external intermittency
on the logarithmic law can be taken into account by conditioning the mean velocity
profile to the turbulent sub-volumes only. As a threshold to discern turbulent from
non-turbulent regions within the logarithmic layer, we use here ω0 = 2ωrms(δ95),
but in a qualitative way, the findings put forward also hold for ω0 in the range
1/8 < ω0/ω̃ < 1. When considering the conditioned profiles, both estimates for κ

(Eqs. 6.9b and 6.8b) vary less with height in the region 50 < z+ < 200 as seen in
Fig. 6.7. In particular, the problematic decline of the estimate for κ̂diff is reduced by
about 50%when only the turbulent fraction of the domain is considered.We propose
hence the modified logarithmic law

U+
turb = 1

κ
ln z+ + A0. (6.10)

Using the velocity conditioned to the turbulent regions of the flow, this formulation
takes into account effects of external intermittency in the logarithmic layer of the
flow. The considerable improvement of the estimator for the von-Kármán constant,
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κdiff , provides strong evidence that the failure to establish a plateau in κdiff(z+) is, at
least partly, an effect of the entrainment of non-turbulent fluid into the logarithmic
layer. As such, this effect is intrinsic to Ekman flow however high the Reynolds
number and, contrary to possible other mechanisms with impact on the logarithmic
law at intermediate Reynolds numbers, cannot be expected to cedewhen Re is further
increased. [In fact, the shifted-origin hypothesis for the logarithmic law put forward
by Spalart et al. (2008) seems now again a lot more attractive than it appeared in the
light of the findings in Spalart et al. (2009)].

While actually a consequence of external intermittency, this modification can be
interpreted in analogy to a wake-law, but it extends deep into the logarithmic layer.
When rewritten in terms of the actual velocity profile, i.e. including the non-turbulent
regions, our findings suggest the formulation

U+ = 1

κ
ln z+ + A0 + fext. int.(z

−, z+), (6.11)

where fext. int. can be interpreted as a wake function representing the effect of external
intermittency and is exactly prescribed by the difference U+ −U+

turb of the average
wind speed in the conditioned and unconditioned fields. Similarity properties and
the exact dependency of the function fext. int. on the non-dimensional heights z− and
z+ need to be identified. [Given the findings presented in this work, parameterizing
fext. int. through a universal intermittency function γ seems an attractive approach.]
With regards to absolute values of the parameters related to the logarithmic law, our

conventional mean velocity profiles support values for κ in the range [0.39, 0.41]—
depending on the height range from which they are estimated (Table6.3). When the

Table 6.3 Estimates from conventional and conditioned velocity profiles for A0 and κ based on a
least-squares fit

The fitted region varies according to the column ’interval’. The column with reference values to
Fig. 6.7 is colored gray
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non-turbulent patches are excluded from the field, the estimate of κ increases as
a consequence of the lower velocity U+

turb < U+ appearing in the denominator of
the estimators for κ . Along with an increasing effect of external intermittency, this
impact increaseswith height: The impact on κ of using the conditioned profile instead
of the conventional averages is a 2% increase when estimated for 50 < z+ < 100,
but already a 6% increase when estimated for 120 < z+ < 240. When using the
conditioned profile, dependency of bothA0 and κ on the height range fromwhich they
are estimated decreases and the data only support the reduced range [0.41, 0.42] for
the von-Kármán constant.We interpret this reduced uncertainty in κ as a consequence
considering an additional relevant physical mechanism in the logarithmic layer of
the flow.

The error in estimating the von-Kármán constant. Given the high degree of
accuracy in recent boundary layer measurement techniques such as particle-image
velocimetry and volume-resolved laser–Doppler anemometry, it is rather surprising
that there is still an uncertainty of the order of 10% in the actual value of κ (Bailey
et al. 2014). Analysis of both the partitioned and unpartitioned data allows to quantify
the correlation between the boundary constantA0 and the estimate of the von-Kármán
constant κ from a velocity profile. The strong dependency found below shows that an
estimation of κ alone is probably notmeaningful, and that thewide range of estimates
for the value in κ can be explained through the correlation between κ and A0.

The logarithmic law for the mean velocity

U+ = 1

κ
ln z+ + A0 = 1

κ
ln

(
z+

e−κA0

)
(6.12)

is only valid over a finite layer, whichmeans, besides the non-dimensionalized veloc-
ity gradient κ , a second unknown, A0, the lower integration bound comes into play.
As seen in Eq. (6.12), A0 can be recast to a non-dimensionalized scale height z0 for
the logarithmic layer, and it is z+

0 = e−κA0 ≈ 1/8.

Fig. 6.8 Shading of relative L2 error as defined in Eq. (6.13) of the logarithmic fit for 40 < z+ <

200 with respect to the conventional mean velocity (left panel) and the mean velocity Uturb condi-
tioned to the turbulent sub-volumes (right panel)
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Fig. 6.9 Error εL2 (Û ) for the optimal in the value of κ as a function of A0. The very narrow
but elongated region of small errors indicates a strong correlation between the two fundamentally
independent parameters

The L2 error in Figs. 6.8 and 6.9 is calculated as

εL2(Û
+)|κ,A0 = ||Û+ − (κ−1 ln z+ + A0)||L2

||Û+||L2

=
∫ zmax

zmin

[
Û+ −

(
ln z+

κ
+ A0

)]2
dz+

∫ zmax

zmin
(Û+)2dz+ ,

(6.13)

where Û is a profile obtained from the simulation N1000L. A very strong correlation
between the optimal κ andA0 is evident in Fig. 6.8. This correlation is a consequence
of the logarithmic law itself since κ and A0 are not uncorrelated in the estimate for
the von-Kármán-constant κ:

κ̂(z+) = ln z+ + A0

U+ . (6.14)

This persistent correlation may be one reason for the spread of estimates for the von-
Kármán constant. When estimated from a profile U+(z+) (instead of the derivative
∂U+/∂z+), it cannot be estimated alone, but has always to bemeasured in conjunction
with the lower boundary condition for the logarithmic layer, A0. It is

A0

κ

∂κ

∂A0
≈ 0.5 (6.15)

around A0 = 5.0, a common value forA0. This means, a 10% change inA0 imposes
a 5% change on estimates of κ .
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Fig. 6.10 Radial power spectral density of the neutrally stratified case N1000L; upper panel shows
streamwise velocity component, central panel spanwise and lower panel the vertical component

6.4 Flow Synopsis

This chapter concludes with a visual description of the flow in terms of spectra of the
three velocity components and slices of the enstrophy. Altogether those encompass
many of the aspects discussed throughout this chapter.

The vertical structure suggested by the intermittency factor γ (z) is consistent
with a visual inspection of the flow enstrophy fields (Fig. 6.11). The strongly vortical
regions adjacent to the surface (Fig. 6.11a, b) are typical of wall-bounded flows
and indicate the level of the buffer layer. In the buffer layer, vorticity is mainly
associated with so-called surface streaks (Fig. 6.11c). Ejections of turbulent fluid
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(a)

(b)

(c) (d) (e)

(f) (g)

Fig. 6.11 a, b Streamwise–vertical cross sections showing the magnitude of the gradient of con-
centration of a passive scalar originating from the surface. Grey scale varies from 103�−1

RO (white)
to 10−1�−1

RO (black) where�RO = G/ f . Block grey-shading in (b) indicates the region shown (a).
c–g Horizontal cross-sections. Wind magnitude in the buffer layer (z+ � 15 (c)), in the upper part
of the logarithmic layer (z+ � 100, z− � 0.11 (d)), and the outer layer (z− � 0.75, (e)). (c) shows
only the subset marked by white shading in (d) and (e). f, g plot the scalar gradient at z+ � 40
in the whole domain (f) and for the grey shaded square from (f) illustrating the hairpin vortices
(g). Shown in this figure is case N1000L, which has been carried out in computational domain
rotated by approximately −α: The horizontal planes in part figures (c)–(g) are rotated such that the
geostrophic velocity is pointing from left to right as shown in the sketch
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are seen as excursions of the white colors into higher levels of the boundary layer
(Fig. 6.11a, b).

The change of organization in the turbulent flow when moving upwards is illus-
trated by horizontal cross-sections of wind magnitude (Fig. 6.11c–e) and an increase
of the dominant length scales with height in the power spectra of the velocity vari-
ances (Fig. 6.10): In the buffer layer (Fig. 6.11c), the flow is dominated by surface
streaks aligned with the mean wind at that level which is anti-parallel to the force
exerted on the fluid by surface shear stress τwall ; a clear signature of these streaks
is found in the spectra of u along the line z = λ1/2. In the fully turbulent part of
the outer layer (Fig. 6.11d), the turbulence is modulated at large scale that is rotated
by about 20◦−30◦ clockwise with respect to the geostrophic wind. This large-scale
modulation has a dominant length scale of λr ≈ 5δ which leaves the strongest sig-
nature around z = δ; a downward penetration of this dominant mode is found in all
three components though it is strongest in the streamwise component (Fig. 6.10).
In thi outer layer (Fig. 6.11d), the small-scale structure appears as noise. At higher
levels (Fig. 6.11e), the boundary layer is externally intermittent, because turbulence
at those levels is mainly provided by strong ejections from lower levels happening
only sporadically. Such generated turbulent structures in the outer layer of the flow
are long-lived because of their relatively large extent and the weakness of turbulent
dissipation at these large scales.

Horizontal planes in the quasi-logarithmic layer of the flow (at z+ � 40, Fig. 6.11f,
g) show that the field is homogeneously turbulent, and that the dominant small-scale
structures are hairpin vortices typical of the logarithmic layer (Adrian 2007). Their
intensity is modulated at a large scale as discussed above. This large-scale is rotated
about 20◦–30◦ clockwise with respect to the geostrophic wind, and this is the same
orientation as that of the modulating structures in the logarithmic layer. This large-
scale organization is typical of wall-bounded flows (Marusic et al. 2010; Adrian
2007), and there remains considerable controversy about the role of these large-
scale structures in the inner layer (Jiménez 2013). In the present case, they have a
clear organization that can be attributed to some large-scale instability inherent to
the flow (Barnard 2001); spectral analysis suggests these structures originate from
the far outer layer of the flow. The existence of such large-scale structures is hence
a fundamental property of turbulent Ekman flow and I expect that they are crucial
when the flow is exposed to stable stratification, as discussed in Chap.8.

6.5 Summary

In this chapter, the neutrally stratified Ekman flow is discussed. For the Reynolds
numbers Re ∈ {500, 750, 1000}, the set-up is well within the turbulent regime, and
the scale separation is large enough for a logarithmic layer to develop.

The impact of the averaging period on flux measurements based on single-point
probes is quantified. For averaging intervals of the order of the eddy-turnover time,
fluxes are underestimated by about 1%, an acceptable error given the precision

http://dx.doi.org/10.1007/978-3-319-45044-5_8
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achieved by boundary-layer measurements in the field. The eddy-turnover time may,
however, be much longer than commonly used averaging intervals on the order of
5–10min.

The analogy of the surface layer of Ekman flow with that of channel flow is
investigated. In agreement with previous work, a quasi-logarithmic layer above
z+ � 20 is found that extends up to z+ � 100 at Re = 1000. This well-established
analogy of the mean-flow profiles is extended here, and shown to also apply to the
turbulence-energy budget. In the outer layer, the flow is externally intermittent, an
important differencewith channel flowwhere deviations from the logarithmic law for
the mean velocity are caused, at least in part, by the effect of external intermittency.
The external intermittency is quantified here by means of the enstrophy allowing to
partition the flow to turbulent and non-turbulent regions. Using conditional statistics
the impact of external intermittency on the logarithmic law for the mean velocities is
quantified: A prominent dip inU+/(ln z+ + A0) in the upper part of the logarithmic
layer that was observed before, is shown to be a consequence of external intermit-
tency. This dip is largely reduced by considering only the turbulent sub-volumes of
the flow, and the data fit then the formulationU+

turb = κ−1 ln z+ + A0 with κ = 0.413
and A0 = 4.46.
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Chapter 7
Turbulence Regimes and Stability

Under the impact of stable stratification, the dynamics of turbulence are multifarious,
and they depend on the degree of stratification; a division of the flow into stability
regimes proves useful. Stability regimes are discerned in terms of the qualitative
impact of static stability on the flow dynamics as discussed in Chap.1, and they are
conveniently described in terms of the buoyancy flux (Fig. 7.1; repeated here from
Chap.1 for reference).

Despite studies of the planetary boundary layer with conceptual models, LES
as well as observations, the progress toward a general framework for the stable
boundary layer has been limited (Sandu et al. 2013; Steeneveld 2014; Mahrt 2014).
Limitations are particularly pertinent with respect to an approach comprising all
regimes of stability—from the near-neutral limit of weak stability to the extreme
limit where the flow laminarizes, at least partly. While there is progress with regards
to conceptual models at the very stable end (van deWiel et al. 2012), LES and RANS
simulations have severe problems in this regime (Jiménez and Cuxart 2005; Maurit-
sen and Svensson 2007; Huang and Bou-Zeid 2013). Problems of LES and RANS
are caused by a break in the underlying paradigms when simulating a stably strati-
fied turbulent flow at large stability: if a flow is not turbulent-throughout, concepts
commonly employed for the turbulence closure in such simulations do not hold.
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Fig. 7.1 Schematic of the
turbulent buoyancy flux in
the surface layer as the bulk
stratification in a boundary
layer increases

Unfortunately, insight into the nature of and thresholds for transition from the turbu-
lent to the laminar state of a flow—necessary for a physically-based parameterization
of turbulent fluxes beyond weak stability—is still small.

In contrast to LES and RANS, the current DNS approach does not rely on a
turbulence closure: It evades above mentioned paradigm breaks by resolving the
full spectrum of turbulent motion. The set-up introduced in Chap. 2 with parameters
shown in Table7.1 allows—for the first time—to study all regimes of turbulence in
the SBL under well-controlled conditions. This is achieved varying only a single
parameter, namely the bulk stratification RiB . In absence of a turbulence closure, the
underlying assumptions consist only in the Boussinesq approximation of the Navier–
Stokes equations, and they remain valid in the extreme limit of stratification when
the flow re-laminarizes; the non-linear dynamics of re-laminarization are explicitly
resolved in the DNS. This chapter begins with a discussion of the impact of initial
conditions and time scales for the flow evolution. Subsequently, the regimes of stably
stratified turbulence are identified (Sect. 7.2), and the flow in each of the regimes is
described (Sects. 7.2.1–7.2.3).

7.1 Initial Conditions and Time Scales Under Stable
Stratification

Time enters the set of parameters on which the statistical state of the flow depends
once the flow is exposed to a stable density stratification; the turbulent state of the flow
at a particular time thenmay depend on the initial condition. In the present set-upwith
fixed RiB , the energy extraction by surface heat flux is a priori unknown, and so is
the evolution of total energy of the flow. While the long-term quasi-steady evolution
of the system is governed by RiB , the state of turbulence during an initial period
is mainly determined by the initial condition—and not by the external parameters
alone. Hence, the bulk stratification, RiB , not necessarily indicates appropriately the

http://dx.doi.org/10.1007/978-3-319-45044-5_2
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Table 7.1 Overview of simulations; the set covering all stability regimes is shaded in red

These simulations have been initialized using a neutrally stratified initial condition together with
a horizontally homogeneous buoyancy profile as described in Chap.2 (Eq.2.14). The simulations
at Re = 500 are complemented by a set of simulations at Re = 1000 to investigate the Reynolds-
number effect on the findings presented here. The set labeled IC investigates the impact of the initial
conditions; in these simulations, the bulk stratification increases gradually, and initial conditions
from the preceding stratification (column IC Case) are used as shown in the sketch. The grids
A–C are described in the lower table

http://dx.doi.org/10.1007/978-3-319-45044-5_2
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turbulence regimewhich is primarily governed by the surface energy flux (Sect. 2.2.3;
for a discussion of the critical stability threshold in the surface layer, see Sect. 8.2).1

The associated transition time scales are fundamental properties of the flow. The
question, How do these time scales depend on the initial condition? is addressed
through an additional set of simulations labeled with the prefix IC (Table7.1). This
set investigates whether transition time scales are determined by the strength of
stratification only or also by the way in which it is imposed. The simulations listed in
Table7.1 vary on multiple time scales (Fig. 7.2): first an initial adaptation, second—
in the case of a breakdown of turbulence—a turbulence recovery, third the inertial
oscillation, and fourth a buoyancy oscillation. Through analytical and numerical
study of the flow and the governing equations, I associate here physical processes
to variations on these time scales. This understanding of processes and associated
time scales provides a basis for the subsequent study of stability regimes under stable
stratification (Sect. 7.2).

7.1.1 Initial Adaptation

When the neutrally stratified flow is suddenly exposed to a cooler surface, there is
a period of time over which the flow does not respond to the density perturbation
and buoyancy mixes as passive scalar into the buffer layer—a thin strongly stratified
layer develops in the vicinity of the surface. The system responds to this strong
perturbation from the surface with a reduced turbulence intensity and enstrophy
magnitude in all cases (Figs. 7.2 and 7.8). The strength of this initial response is
stronger for stronger stratification and varies monotonically with the Brunt–Väisälä
frequency at the surface, which is strictly seen expressed by L+

O , but as a consequence
of our set-up varies linearly with

√
RiB . In the simulations it is found for this initial

transient that

1

Eneutral
√
RiB

∂E

∂t−
� −4, (7.1)

where the derivative is approximated as (E(t ′)− E(0))/t ′ for t ′− = 0.2 and E(t ′) =∫
e(t ′, z)dz and t− = t f/2π . This transient is observed for cases in which the

stratification concentrates in the viscous sub-layer, and in the cases IC150S and
S620LH, where the stratification is increased by a factor of four, respectively five.
When compared to the inertial period, this initial transient is short—it ends at t− �
0.2—and is followed by a much slower recovery (Figs. 7.2 and 7.8).

1Note that a Neumann boundary condition on the scalar, i.e. a fixed surface heat flux does not solve
this issue in terms of the total energy as the rate of extraction of (kinetic) energy from the mean
flow by the turbulence dynamics would remain elusive.

http://dx.doi.org/10.1007/978-3-319-45044-5_2
http://dx.doi.org/10.1007/978-3-319-45044-5_8
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(a) (b)

Fig. 7.2 aVertically integratedTKEfor the series of cases (IC038S,IC050S,IC075S,IC150S)
described in Table7.1. b Same as (b) but for vertically integrated spanwise vorticity RMS �2

x

7.1.2 Recovery After Initial Turbulence-Breakdown

The recovery of TKE after an initial breakdown of turbulence is found to occur on a
time scale of several inertial periods. The starting point of this recovery depends on
the difference between the dynamic impact of the local stratification at the surface
(quantified by LO or Ri f (z = 0) = (

L+
O

)−1
) on the one hand and the bulk stratifica-

tion (quantified by RiB) on the other; for the simulations done here, it starts between
t− = 0.5 and t− = 1. [One may think of set-ups with RiB � 1 > 0.62 that would
allow for globally intermittent turbulence also for large t−; in the beginning the tur-
bulence would, however, be eliminated by killing its main source in the buffer layer.
Before the recovery can start, buoyancy concentrated into the buffer layer needs to
be distributed over a larger fraction of the boundary layer which can only happen
by viscous mixing once turbulence has ceased.] During the turbulence-recovery, the
enstrophy fluctuation (Fig. 7.2a) grows until it reaches an equilibrium at a level close
to but smaller than the neutral reference. The time scale of this enstrophy recovery
is about two inertial periods independent of stratification strength.

While enstrophy approaches the level of the neutral reference from below, TKE
exceeds the reference level in all simulations (Fig. 7.2). The time scale of the TKE
recovery—when considered in terms of the eddy-turnover time 1/ f—is similar to
that observed by Nieuwstadt (2005) in DNS of stratified open channel flow. This
growth in TKE but not the enstrophy indicates significant contributions from weakly
or non-vortical motions related to the excitation of waves which efficiently extract
energy from the mean flow (this effect is quantified in Sect. 8.3.3). In the present
cases, the significant contribution of wave energy is independent of the way in which
the initial condition is imposed, but the growth rates of TKE during its recovery are
larger for stronger stratification.

http://dx.doi.org/10.1007/978-3-319-45044-5_8
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7.1.3 Inertial Oscillation

Numerical evidence. The inertial oscillation is pervasive in perturbed rotating sys-
tems, and all simulations vary at the inertial time scale 2π/ f . Under neutral strati-
fication, the flow is run for a long time to achieve a fully turbulent state and forget
the initial condition such that the inertial oscillation—due to an unbalanced initial
condition is very small—, i.e. the flow is in its equilibrium with respect to the iner-
tial oscillation. When stratification is imposed on the flow, the equilibrium velocity
profile—which the flow hypothetically attains in the long run—changes, and the flow
is out-of-equilibrium. This is most prominently seen in an oscillation of the mean
velocity profiles as visualized by means of the flow hodographs in Fig. 7.3. When the
hodograph is tracked at a certain height (thin lines in Fig. 7.3), the damped nature of
the inertial oscillation becomes apparent.
Analytical study. In Chap.5, a solution for a perturbed case of the quasi-laminar
Ekman layer is derived in a non-dimensional framework. This model is employed
here to understand aspects of the inertial oscillation in vertically integrated form, in
particular its damping. For details of the analysis, see Appendix A; in this section
only, all variables are non-dimensionalized byG, D and ν as outlined in Appendix A.
In the stratified case, this damping is important as it sets the time scale for transition
from the initial to the equilibrium velocity profile.

The streamwise momentum deficitU and spanwise momentum V are defined as

U :=
∫ ∞

0
(U − 1)dz and V :=

∫ ∞

0
V dz, (7.2)

(a)

Fig. 7.3 Hodographs of the cases N1000LH (black), I150LH (red), and S620LH (blue) at the
time instants marked by vertical lines in Fig. 7.5a.

http://dx.doi.org/10.1007/978-3-319-45044-5_5
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and I obtain the system of coupled ordinary differential equations

∂tU = V − u2� cosα and ∂tV = −U − u2� sin α (7.3)

with the equilibrium

U∞ = −u2�,∞ sin α∞ and V∞ = u2�,∞ cosα∞. (7.4)

This stationary problem may be closed using the semi-empirical approach of
Coleman et al. (1990). In Chaps. 5 and 6 it is shown that an evaluation of the asso-
ciated constants satisfactorily agrees with this closure. It remains, however, unclear
how the perturbed system (7.3) behaves. In particular, it is unclear what determines
the damping of the inertial oscillation. When discussing inertial oscillations, it is
often assumed, that the terms u2� cosα and u2� sin α act as linear damping term of
the above oscillator. While this is in accordance with observations and the physical
intuition that inertial oscillations are damped, it is not clear from this formulation
of the equations. In Eq. (7.3), it is only the deviation of the flux from its equilib-
rium

(
u2� cosα − V∞,−u2� sin α − U∞

)
which is responsible for deviations from an

undamped harmonic oscillator.
Numerical investigations suggest that the oscillation in the momentum fluxes may

decouple from the surface shear stress under certain conditions (Evgeni Fedorovich,
2014, personal communication). This is a major problem for the parameterization
of the surface shear stress based on boundary-layer parameters such as integrated
momentum flux or the momentum at a particular height, and I do believe that a
better understanding of the inertial oscillation can help to alleviate and overcome
these problems. Under stable conditions, the role of the surface shear stress is even
more important: if the prognostic equations for U and V are considered, then it
is not only the turbulence-closure problem which is dumped in the prescription of
the surface shear stress but also is the surface shear stress the only quantity through
which buoyancy effects may enter in the momentum budget.

Let U = U ′ + U∞ (and analogous for the perturbations of the surface shear
stress V , fx and fy defined in Appendix A) to obtain

∂2U ′

∂t2
= −U ′ + f ′

y + ∂ f ′
x

∂t
(7.5a)

∂2V ′

∂t2
= −V ′ − f ′

x + ∂ f ′
y

∂t
, (7.5b)

which is an exact integral form of the Navier–Stokes–Coriolis equations. In the
context of the analytical model, Eq. (7.5) can be rewritten as

∂2U ′

∂t2
= −

(
1 + 1

4Re2Eτ 2

)
U ′ + 1

ReEτ

∂U ′

∂t
∂2V ′

∂t2
= −

(
1 + 1

4Re2Eτ 2

)
V ′ + 1

ReEτ

∂V ′

∂t

(7.6)

http://dx.doi.org/10.1007/978-3-319-45044-5_5
http://dx.doi.org/10.1007/978-3-319-45044-5_6
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Fig. 7.4 Illustration of the
perturbation ansatz and the
analytical solution for the
study of the inertial
oscillation

−U∞ −U(t)−U0

−U (t)
V∞

V(t)

V0

V (t)

with τ = μ0 + t/ReE (Appendix A).2

Interpretation. Solutions for the perturbed Ekman-layer problem have been pre-
sentedpreviously (Ekman1905;Shapiro andFedorovich2010).Thepresent approach
is special in that the solution does not involve the (numerical) evaluation of integrals
or the like. A solution to the equations is shown in Fig. 7.4. The damping term
1/(ReEτ) is time-dependent as τ = τ0 + t/ReE , and the strength of the non-linear
effects in the damping depends on τ0/(t/ReE ) assuming that time is only varying
on the order of 1. If large times are permitted, non-linear effects matter for any com-
bination of τ0 and ReE . Beyond this non-linearity in the damping, the frequency is
shifted to a value slightly larger than the inertial period. This illustrates an interest-
ing behavior of the inertial-oscillator model; in the context of a linear equation, the
oscillator does not exactly behave as a linearly damped harmonic oscillator when
exposed to perturbations of a Gaussian type. While the exact result presented here
only holds for the first mode of the family of possible perturbations, any odd deriv-
ative of the Gaussian implies a similar analysis that will yield similar corrections to
the frequency and damping terms. These derivatives might form a complete basis
of the functional space of the solutions fulfilling the boundary conditions and their
relevance goes beyond the analytical study of the first mode.

Strictly seen, this analysis is valid for laminar flows at lowReynolds number. In the
turbulent flow, Re is so high that non-linear corrections to the frequency and damping
terms in Eq. (7.6) barely matter. One can, however—in the spirit of Ekman—resort
to constant-eddy turbulence implying ReE � Re. In that case, while the viscous
corrections alone are small, the modifications based on ReE may be substantial.
This interpretation is supported by the DNS data which qualitatively confirm the
suggested correction terms.

2The subscript E to the Reynolds number is used here to indicates that this is not the Reynolds
number of the turbulent flow, but a Reynolds-number based on the eddy-viscosity, i.e. ReE :=
GD/(νE + ν) where νE � ν and hence ReE � GD/νE .
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7.1.4 Buoyancy Oscillation

Numerical evidence. A high-frequency oscillation in the outer layer is found in
the case S620LH which is spun of the case I150LH at t− � 1.65. While there is
significant fluctuation energy in the vertical component of velocity, the turbulence
source in the buffer layer is eliminated as indicated by the drastic decrease of 〈ww〉
near the wall (Fig. 7.5b) as well as the absence of turbulent motion throughout most
of the near-wall region. This high-frequency oscillation dominates the time series of
turbulence kinetic energy (〈uiui 〉, TKE), streamwise vorticity r.m.s. �x (Fig. 7.5a)
and buoyancy flux (〈bw〉, Fig. 7.5c), and its magnitude explains to a large extent
the time signal in the integral of both the TKE and the r.m.s. of the stream-wise
vorticity �x . This vigorous oscillation is absent if a non-turbulent scalar profile is
imposed as initial condition (Fig. 7.8). The initial energy for this oscillation becomes
available through the sudden increase of stratification imposed by a multiplication
of the buoyancy profile from RiB = 0.15 to generate the initial condition for the
case ri62.
Analytical study. In Appendix B, I show by an analytical study constrained to
a fixed height that this oscillation is the manifestation of a conversion of kinetic
perturbation energy 〈w′w′〉 to potential perturbation energy 〈b′b′〉. Mathematically,
the total energy of this oscillator is

e :=
(
3

2
N 2

〈
w′w′〉 + 〈

b′b′〉) , (7.7)

and a linear diffusion closure for the kinetic and potential energies implies that
∂t e = −e/τe where τe is the local-in-height dissipation time scale. When the return-
to-isotropy term is neglected, the equations for

〈
w′w′〉, 〈

b′b′〉 and 〈
w′b′〉 decouple

from the rest, and read as

1

2

∂
〈
w′w′〉
∂t

= 〈
b′w′〉− 1

τε

〈
w′w′〉 (7.8a)

1

2

∂
〈
b′b′〉
∂t

= − 〈
b′w′〉 N 2

(
1 + 1

2

)
− 1

τε

〈
b′b′〉 (7.8b)

∂
〈
b′w′〉
∂t

=
[〈
b′b′〉 − 〈

w′w′〉 N 2

(
1 + 1

2

)]
− 1

τε

〈
b′w′〉 (7.8c)

At a particular instant in time, there is a dominant balance between the time-rate of
change and the turbulent transport terms (the dashed and solid lines in Fig. 7.6 col-
lapse). Only over the course of many oscillations, the dissipation of the perturbations
becomes significant, and the simulation data suggest τ−

ε � 0.23 at z− � 0.4. The
frequency ωbw and damping αbw of this oscillation in 〈bw〉 are

ω2
bw = 5

2
N 2 − 2

τeffτε

and αbw =
(

1

τeff
− 4

τε

)
(7.9)
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(a)

(b)

(c)

Fig. 7.5 a Square root of domain-integrated TKE (
√
E), domain-integrated r.m.s. of the stream-

wise component of vorticity �x , and domain-integrated r.m.s. of the wall-normal component of
vorticity �z , normalized by the corresponding values from case ri00. Lines in red tones in panel
(a) correspond to RiB = 0.15; thereafter RiB = 0.62 (blue tones). b Contour plot of

√〈ww〉, c
Contour plot of 〈bw〉. In panels (b) and (c) the time axis changes scale around t− ≈ 1.6, i.e. when
the stratification is increased, to better illustrate high-frequency variability
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(a) (b)

Fig. 7.6 a Time series of vertical velocity variance and scalar variance and the sum of the two
(Eq. B.5). b LHS (solid) and RHS (dashed) of Eqs. 7.8a and 7.8b. Data are plotted at z− � 0.4

where N = √
∂z B is the Brunt–Väisälä frequency at that height where the oscillation

is studied, and τeff , τε are the return-to-isotropy and diffusion time scales.
Interpretation. It is important to note that the frequency of this oscillator is not the
Brunt–Väisälä frequency, but 2N 2 when the triple correlation terms are neglected,
and (5/2)N 2 if the triple-correlation terms are closed through a second-order down-
gradient closure. This frequency is also found in the data plotted in Fig. 7.6 where one
can count 51 oscillations per inertial period. At the level where the data is plotted, the
buoyancy frequency is (N−)2 = 21 which gives an estimated frequency of ω−

bw �
52.5—very close to the above estimate ω−

bw � 51 from the DNS data. It is surprising
that such a simple model can capture the dynamics after turbulence collapse in the
outer layer rather well, and it might be worth to consider this mechanism further.

Equation (7.9) defines the transition from the oscillation-dominated to the dissi-
pation-dominated regime: The marginal stratification for damping of the oscillation
is N 2

crit = 4/(5τeffτε).

• If N 2<N 2
crit , the frequencyωbw is purely imaginary and the system is over-damped.

In this case, the inertia-buoyancy oscillation of second-order quantities plays a
minor role: turbulent dissipation and return to isotropy are the dominant terms. In
this regime, the models applied for the turbulence closure are very important.

• If the stratification is increased such that N 2 ≈ N 2
crit , the oscillation is dominated

by N 2 and the terms involving τε and τeff constitute (i) a modification to the
frequency of the oscillator and (ii) a damping of the oscillation.

• For N 2 � N 2
crit the stratification imposes an under-damped oscillation, and the

conversion mechanism between buoyancy and velocity perturbations dominates
the turbulent mechanisms in the flow. In the limit of high stratification, the system
becomes a buoyancy oscillator that permanently converts energy from kinetic
velocity perturbations

〈
w′w′〉 to buoyancy variance

〈
b′b′〉 and vice versa. Vertical

velocity variance
〈
w′w′〉 is created through buoyancy flux at the rate 〈

b′w′〉. At the
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same time, this production of vertical velocity variance consumes energy contained
in the buoyancy perturbations

〈
b′b′〉 at a rate (3/2) N 2

〈
b′w′〉. In this regime, the

turbulence parameterizations merely provide a weak damping and do not have a
large effect on the evolution of the system.

Despite its vigorous nature, this oscillation does not create three-dimensional
small-scale turbulence as can be inferred from the large contrast between �z and �x

(Fig. 7.5a). In the case studied here, the time-signal in �x is governed by the high-
frequency oscillation, whereas �z is close to zero and does not exhibit an oscillation
of similar magnitude. This indicates the absence of an effective return-to-isotropy
term (this term would work on time scales on the order of the integral time scale
of the turbulence, f −1, longer than the period of this oscillation on the order of
N−1). Further, this demonstrates the absence of so-called pancake vortices—often
hypothesized as a source of vorticity under strong stratification (Mahrt 2014).

7.2 Classification of the Stability Regimes

The focus here is on the time after the initial adaptation of the system to the stratifi-
cation, and simulations are classified according to their dynamics in this time span
as weakly, intermediately, or very stable (Sects. 7.2.1–7.2.3). During this slow evo-
lution, turbulence in the vertical column does not immediately adapt to changes in
surface friction, and both u� and δ evolve on a time scale δ/u� = 1/ f—a conse-
quence of the non-stationarity of the problem. It is hence problematic to use u�(t)
as a velocity scale; instead, u�,neutral and δneutral are used in this chapter as the refer-
ence scales to normalize the results and compare with the neutral case. An analysis
of the TKE budgets (Fig. 7.7) in comparison with Fig. 7.1 illustrates that the set of
cases introduced in Table7.1 covers all stability regimes. The time evolution of verti-
cally integrated TKE (Fig. 7.8a) corroborates this finding and suggests the following
classification of the simulations:

1. Weakly stable: integrated TKE changes slightly (10–20%, cases W015S,
W031S) with respect to the neutral configuration

2. Intermediately stable: integrated TKE significantly (50%) decreases and sub-
sequently recovers (case I150, S310S)

3. Very stable: integrated TKE is diminished nearly entirely, and subsequently
recovers (case S620).

Time series of integrated enstrophy as well as the vertically integrated budget of
TKE at t− = 0.5 support this classification (Figs. 7.7 and 7.8b): The buoyancy flux
reaches its maximum among all cases in case I150 supporting its identification as
intermediately stable. Both the shear production (blue bars) and the buoyancy flux
(black bars) change drastically when the most stable case S620, attributed to the
very stable regime, is considered. In this case the terms in the TKE budget as well
as the TKE itself reduce to �5% of the neutral reference. This reduction of order
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one in both the turbulence production and buoyancy flux with respect to the neutral
reference illustrates that the buoyancy flux is limited by the absence or weakness of
turbulent motion, and not by the pure strength of buoyancy destruction

∫ 〈bw〉dz.

7.2.1 Weak Stability

The boundary layer forming in the weakly stable regime (RiB � 0.05; W015S,
W031S) is very similar to that found under neutral conditions (Fig. 7.10a, d and
Chap.6). Turbulent mixing efficiently weakens the stratification and a quasi-neutral
weakly-stable boundary layer forms. As expected and found elsewhere (Sun et al.
2012;Ha et al. 2007;Monin 1970), theweakly stable boundary layer iswell described
when considered as a perturbation of the neutrally stratified one. TKE alters most
strongly in the outer layer (not shown) as also found by Coleman et al. (1992) as well
asGarcía-Villalba and del Àlamo (2011), and the hodograph is barely distinguishable
from that of the corresponding neutral case N500 (Fig. 7.9c, red line).

7.2.2 Intermediate Stability

In the intermediately stable regime, at RiB = 0.15, TKE reduces by � 50% during
the initial adaptation period, and the integrated buoyancy flux at t− = 1 is the
maximum of all simulations carried out (Fig. 7.7). The relative increase of the inte-
grated buoyancy flux is one order of magnitude smaller than the reduction of TKE
and shear production with respect to the neutral reference (Fig. 7.7). This illustrates
that themain impact of buoyancy on the flow is not the direct destruction of TKEbut a

Fig. 7.7 Vertically
integrated terms of the TKE
budget equation at Re = 500
and t− = 0.5 for cases
W015S, W030S, I150,
S310S and S620
normalized with the shear
production rate of the neutral
reference

http://dx.doi.org/10.1007/978-3-319-45044-5_6
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(a) (b)

Fig. 7.8 a Temporal evolution of vertically integrated turbulent kinetic energy E(t) (solid) and
averaged wall friction velocity u�(t) (dashed) normalized with the corresponding neutral reference
Eneutral and u�,neutral , respectively. b Same as a, but for the streamwise enstrophy 〈�2

x 〉(t)

decrease in the shear-induced production, in particular of the stress 〈u′w′〉 (Jacobitz
et al. 1997 p. 243). Profiles of shear production (not shown) indeed confirm this
explanation, in agreement with Jacobitz et al.’s study of stably stratified shear flow.
In contrast to the simulations attributed to the weakly stable regime, the hodograph in
the intermediately stable regime (RiB = 0.15, case I150) departs significantly from
the neutral reference; it lies in between the hodographs from the neutrally stratified
case and a laminar one (Fig. 7.9c).

After an initial decay, the TKE recovers slowly on a time scale of a few inertial
periods (Sect. 7.1.2; blue curve in Fig. 7.9a). When expressed in terms of f −1, the
time scale of this slow oscillation matches the time scale for recovery observed by
Nieuwstadt (2005) in a stably stratified channel flow. Turbulence intensity recovers
across the entire boundary layer, and concomitantly the depth of the stratified layer
increases (sequence of blue lines in Fig. 7.9b). Given a fixed bulk gradient, this
increase in depth of the stratified layer is compensated by weakening stratification
in the surface layer (z− � 0.1). Eventually, during this recovery, the TKE increases
beyond the neutral reference both above z− � 0.5 and in the production region
(Fig. 7.8a) as also observed by Nieuwstadt (2005).

In agreement with recent work on channel and Couette flow (Flores and Riley
2011; Deusebio 2015) and in contrast to the findings of Nieuwstadt (2005), the
simulated boundary layer is globally intermittent. A local break-down of turbulence
is evident from Fig. 7.10 showing quasi-laminar patches in a turbulent environment.
These quasi-laminar patches extend through the entire vertical fluid column in an
otherwise turbulent flow, and hence this state is identified as global intermittency in
the sense of Mahrt (1999). Note that RiB defined in terms of δneutral as an external
control parameter is smaller than the Richardson number defined in terms of the
depth δ(t) of the SBL (δ(t) � 0.5δneutral at t f/2π = 1; see Fig. 7.9b). Hence, the
occurrence of global intermittency in this particular case at RiB = 0.15 agrees with
the observation that global intermittency often occurs if

δB0

G2
= δ

δneutral
RiB � 0.25. (7.10)
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(a) (b)

(c) (d)

Fig. 7.9 Vertical profiles of e a and normalized buoyancy frequency N/ f b blue—case I150,
orange—case S620. d Shows the in-plane Reynolds stress (solid t− = 1; dashed: t− = 2.0; dash-
dotted t− = 3.0). Thin solid lines show the initial condition for the respective case. c Hodographs
after one inertial period (t− = 1) and those from the neutral cases repeated from Fig. 5.6a

7.2.3 Very Strong Stability

Under very strong stability (cases S620, S620LH), turbulence in the surface layer
initially dies out nearly completely since the region of shear production in the buffer
layer is eliminated. The hodograph (Fig. 7.9a) is close to that of the corresponding
laminar Ekman flow; in fact, the eddy diffusivity estimated from the laminar fit to
the velocity profiles (not shown) is 1.01ν. This re-laminarization in the inner layer is
seen in Fig. 7.10: the turbulence with relatively high enstrophy magnitudes in panel
(a) is replaced in panel (c) by large-scale roll-like structures aligned parallel to the
wall-shear stress, i.e. rotated 45◦ counter-clockwise with respect to the geostrophic
wind. The initial re-laminarization is followed by a recovery of turbulence as seen
in the time-series of TKE and enstrophy (Fig. 7.8a, b). The recovery of turbulence
is similar to that observed in the intermediately stable case. This recovery, however,
takes longer, and while the rapid growth of enstrophy levels off around 60% of the
neutral value, the TKE grows beyond its neutral reference.

At the beginning of the recovery of TKE, themaximumofTKEassociatedwith the
peak shear production in the buffer layer is eroded (Fig. 7.9a), that is, the production
region of turbulent stress is eliminated. Around z− = 0.25, the turbulence intensity

http://dx.doi.org/10.1007/978-3-319-45044-5_5


112 7 Turbulence Regimes and Stability

(a) (b) (c)

(d) (e) (f)

Fig. 7.10 Horizontal planes of enstrophy (coloring from low [black] to high [white] values) in a
domain ≈ (10 × 10)δ2neutral at t f/2π � 1. a, d: RiB = 0.015, case W015S; b, e: RiB = 0.15,
case I150; c, f : RiB = 0.62, case S620. a–c show the inner layer z+ � 15, d–f the outer layer
around z− = 0.56.

is reduced even more than at the peak of production; this illustrates the absence
of vertical turbulent exchange across the buffer layer and a decoupling of the flow
inside this surface layer from higher layers of the flow. Above the decoupled surface
layer (z− � 0.5), turbulence is affected less strongly by stratification and decays
slowly from its fully-turbulent initial state between t− � 1 and t− � 2. Such slowly-
decaying residual turbulence is common to night-time boundary layers cooled from
below (Stull 1988), illustrating the appropriateness and relevance of the present
simulations for the study of such cases.

7.3 Summary

This chapter demonstrates that the DNS set-up introduced in Chap. 2 and used
throughout this work is suitable to study all regimes of stratified turbulence with-
out the need to tweak underlying assumptions when stratification is increased to the
extreme limit. While the qualitative behavior of the flow agrees well with theory
and observations, the present approach allows insight into the dynamics of turbu-

http://dx.doi.org/10.1007/978-3-319-45044-5_2
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lence based on fundamental principles only, and it evades uncertainties related to the
application of turbulence closures. A finding of particular relevance is that global
intermittency—in both the time and space dimensions—occurs in absence of external
triggers.

A framework is developed here to analytically study the inertial oscillation and a
conversionmechanismbetween

〈
b′b′〉 and 〈

w′w′〉, and it is found that relatively simple
models cover the impact of thesemechanisms in theflow.The simple analyticalmodel
for the inertial oscillation in Ekman flow is based on the assumption of a constant
eddy viscosity, and it delivers a closed analytical solution for the quasi-laminar
case of an Ekman boundary layer. These dynamics are, however, also relevant in
fully turbulent flow as demonstrated by a comparison of the analytical model with
data from a turbulent DNS of Ekman flow. The derivation of an explicit drag-law for
Ekman flowwhen it is strongly out of equilibrium remains a problem. Present results
suggest that a parameterization of the surface flux based on instantaneous properties
of the flow only is not possible in a temporally evolving case such as a low-level-jet
boundary layer. If, however, the asymptotic equilibrium state of the boundary layer
is known, instantaneous profiles might allow for conjectures about the history and
potential evolution of the system which might give some hope for the existence of a
quasi-local drag law based on an instantaneous and an equilibrium velocity profile.
Such asymptotic equilibrium states may be obtained from future DNS studies once it
becomes feasible from a computational perspective to calculate the flow over many
inertial periods in sufficiently large domains.

An analysis of the impact of initial conditions (Sect. 7.1) unveils coexistence of
motions on various time scales, and is in agreement with the results from analytical
study of the flow. It is found that transients on the order of some inertial periods
are present in the SBL, even under weak stratification. To the extent covered by the
simulations, this finding does not depend on the way in which the initial conditions
are imposed. Hence, it is expected that the SBL generally does not equilibrate over
the course of a night.

Under very strong stratification the outer layer decouples from the surface layer.
In the past, there has been debate on whether such a decoupling produced by bounda-
ry-layer schemes in numerical weather prediction (Derbyshire 1999; Acevedo et al.
2012) and LES (Saiki et al. 2000; Jiménez and Cuxart 2005) is an artifact of the
subgrid-turbulence model. From the data, it is concluded that, at bulk Richardson
numbers of order one (RiB = 0.62 for this particular case), a decoupling is possible
—at least for an intermediate Reynolds number. This is in accordance with van de
Wiel and Moene (2012). In contrast to estimates from numerical weather prediction
or LES, this estimate is not subject to uncertainties in subgrid schemes, but—similar
to stratified shear flow (Jacobitz et al. 1997; Deusebio 2015)—the particular value
of a critical Richardson number for decoupling might depend on Re.
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Chapter 8
Flow Organization and Global Intermittency
Under Strong Stratification

In previous chapters, a set-up to study the SBL is laid out, and I demonstrate how
this set-up is utilized to study turbulence in all regimes of static stability. Under
strong stratification, a collapse of turbulence and global intermittency are observed.
In fact, the potential absence of turbulence under the impact of stratification is long
recognized, and the transition of laminar flow to a turbulent state is subject to the
field of hydrodynamic instability. Following seminal works by Rayleigh (1880) and
Taylor (1923), stability analyses, both linear and nonlinear (Tollmien-Schlichting
instability, Taylor–Goldstein stability analysis, Orr–Sommerfeld equation, Miles–
Howard theorem), where carried out and a number of related instabilities relevant to
atmospheric flows have been identified (Kelvin–Helmholtz waves, Holmboe waves,
Di Prima and Swinney (1981),Maslowe (1981), Tritton andDavies (1981), Fernando
(1991)). While an accurate prediction and description of the transition phenomena
from the laminar to the turbulent state of the SBL is beyond the capability of linear
and—as of yet—also non-linear theory, such theory correctly describes the onset
of transition. There is hence a well-developed conceptual framework to answer the
question if a laminar flow exposed to a density stratification becomes turbulent, or if
it does not so.

© Springer International Publishing AG 2017
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The transition of laminar flow to its turbulent state which is considered in the
hydrodynamic stability analyses, is, however, of limited relevance to the re-lamina-
rization of a turbulent flow. Hence–notwithstanding progress in research on hydro-
dynamic instability–the lack of a consistent framework to treat turbulence in the very
stable boundary layer is still identified as a current challenge in understanding the
SBL (Steeneveld 2014; Mahrt 2014; van de Wiel et al. 2012). Recently, thresholds
based on outer scalings (Nieuwstadt 2005; van deWiel et al. 2012) and inner scalings
(Flores and Riley 2011; Deusebio 2015) were proposed—another manifestation of
the lack of understanding of collapsing turbulence: a threshold for a physical process
may not be constant in terms of the outer and inner scaling since their separation
increases with the Reynolds number. The present results (Sect. 8.2) suggest that the
Obukhov length expressed in wall units, a measure of the scale range unaffected by
stability, governs the turbulence intensity in the buffer layer. This layer is central in
the range of strong stability since it is the main production region of turbulence.

In Chap.7, the transition from the fully turbulent state to the laminar state is shown
to be accompanied by the occurrence of laminar patches in an otherwise turbulent
flow. This partial re-laminarization in an otherwise turbulent flow is referred to as
global intermittency and makes global averages and statistics inappropriate. Global
intermittency thus calls for the use of conditional statistics, but the vorticity-based
conditioning of statistical properties to turbulent and non-turbulent sub-volumes of
wall-bounded flow remains challenging. In Sect. 8.3, a new measure to quantify this
global intermittency is presented. For that purpose, I apply the classical concept of
external intermittency, i.e. the alternation of turbulent and non-turbulent patches of
fluid in the outer layer, to the surface layer: If there are laminar patches of fluid
extending from the outer layer down to the surface layer, the flow is identified as
globally intermittent. To accomplish an identification of global intermittency in the
surface layer, the vorticity-based conditioning of a wall-bounded flow is extended by
a high-pass filter operation prior to the conditioning. This filter removes background
enstrophy impeding the identification of a laminar patch as non-turbulent. Such a
procedure is shown here to be appropriate for the detection of global intermittency
in the surface layer, and—despite its simplicity—it gives reasonable estimates for
intermittency factors in all regimes of static stability.

The capability to detect laminar patches based on a quasi-local1 measure allows
a mutually exclusive partition of the globally intermittent flow to turbulent and non-
turbulent. In a subsequent step, these turbulent and non-turbulent partitions of the
flow are separately analyzed (Sect. 2.3.1). This procedure unveils intriguing dynam-
ics inside both the turbulent and non-turbulent flow regions (Sect. 8.4), and it sug-
gests a separate treatment of the turbulent and the non-turbulent flow partitions
when parameterizing turbulence under strongly stable stratification. Before I com-
mence analyzing the critical stability and introducing conditional statistics alongside

1The spectral filter is a global operation, but the actual calculation of the intermittency factors is
carried out by means of local enstrophy. This is different from other methods proposed recently
such as the one by Deusebio (2015).

http://dx.doi.org/10.1007/978-3-319-45044-5_7
http://dx.doi.org/10.1007/978-3-319-45044-5_2
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Table 8.1 Overview of simulations; the grid for all cases in this table has 3072x6144x512
collocation points

Case Re RiB IC case IC time Analysis
time

N1000L 1000 0 N500L n/a n/a

I150LH 1000 0.15 N1000L 0.0 1.5

I310LH 1000 0.31 N1000L 0.0 0.25

I620LH 1000 0.62 I150LH 1.65 1.65 + 0.45 �
2.1

For details of the cases, see Table7.1 in Chap.7. The column analysis time lists the time that is used
for the computation of power spectra, probability density functions and flow visualizations in this
chapter

the novel filter procedure, the flow’s large-scale organization flow is discussed by
means of visualizations and a spectral analysis. The simulations used for this discus-
sion throughout the present chapter are summarized in Table8.1.

8.1 Scaling of the Very-Large-Scale Structures

Thevertical structure of a globally intermittent flow realization (caseI150LH around
t− � 0.25) is shown in Fig. 8.1. There are stripeswith relatively low enstrophy2 in the
buffer layer. These regions (enclosed by contour lines in Fig. 8.1) are characterized
by a higher buoyancy and the absence of turbulent fluctuations in the vertical and
streamwise components of velocity; they are seen as diagonally elongated smooth
orange patches in Fig. 8.2. In those regions, turbulence is locally absent—the flow
as a whole is globally intermittent though turbulent. The other regions of the flow
where the vorticity is higher and also fluctuates much more (dark colors in Fig. 8.1d;
the iso-contour of ln ζ− = 9.65 is shown in panels (a)–(c)) are turbulent in the usual
sense. Inside these turbulent regions, turbulence appears morphologically similar to
that under neutral stratification (Chap.6, Fig. 6.11).

A segregation of the flow into two partitions with similar characteristics inside
each of them, but a strongly different appearance of the flow among the two par-
titions is also manifest in the probability density functions (Fig. 8.3). Close to the
surface, high probability densities occur for velocities (u/G and v/G) close to zero.
These extend further into the buffer and surface layers when the flow is exposed
to such strong stability that it becomes globally intermittent and laminar patches
occur (RiB = 0.31 vs. RiB = 0.15). Concomitantly, the probability density of the
buoyancy widens, and becomes close to bimodal. One mode originates from high

2Here, already the enstrophy of the high-pass-filtered field introduced in Sect. 8.3.1 is used. The
unfiltered enstrophy would illustrate the absence of turbulence by a smoother structure, but not by
a reduced level of enstrophy.

http://dx.doi.org/10.1007/978-3-319-45044-5_7
http://dx.doi.org/10.1007/978-3-319-45044-5_6
http://dx.doi.org/10.1007/978-3-319-45044-5_6
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Fig. 8.1 Vertical cross-section of case I310LH (RiB = 0.31) at t− � 0.25 along the streamwise
direction. Shown are a streamwise velocity u/G, b vertical velocityw/G, c logarithm of buoyancy,
ln[(1 − b)/B0], d logarithm of enstrophy of a high-pass-filtered field − ln ζ−

hi (cf. Sect. 8.3.1).
Contour lines (black in panels a–c, white in panel d) enclose turbulent regions as detected by the
method developed in Sect. 8.3. Red bars in (d) are the result of a two-dimensional partitioning
where a whole flow column is detected to contain a laminar patch when an enstrophy threshold in
the buffer layer is not exceeded

buoyancy originating from the surface, and the other is a result of downward mixing
of fluid with low buoyancy from above.

The power spectral density (PSD) confirms the above mentioned morphological
similarity of the small-scale structure under stable stratification (Fig. 8.4). The spec-
tral distribution of energy density in the stratified and unstratified flows is very similar
for wavelengths λ+ � 200. In the range 200 � λ+ � 1000, the PSD is reduced, as
seen for instance in the PSD of w, φww along z = λr/3: The area with φww is com-
pletely eliminated in the stratified case for λ+ � 700. Above λ+ � 700 the extent
of spectral space with φww is reduced when only length scales belonging to the
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Fig. 8.2 a,bStreamwise velocityU/G in a horizontal plane in the buffer layer (z+ � 20, caseI310
at t− � 0.25). Panel (a) shows the full domain, where panel (b) zooms on the section (1/4 × 1/4)
on the upper right of panel (a). c Enstrophy iso-surface of ω2 � (20ωrms(δ))

2 colored by horizontal
wind speed in the range 0.4 <

√
u2 + v2/G < 1.15. A schematic of flow organization as discussed

in the main text is overlaid on panels (a) and (b). Streaks aligned with the surface shear stress are
represented by the red dashed line. The orientation of the large-scale structures in the outer layer is
shown by the blue line, and the directions of geostrophic wind and wall shear stress are indicated
by black arrows. Tick-marks are spaced by 5δ in panel (a) and by δ in panel (b)

spectrum of motions smaller than δ+ � 1500 are considered. This agrees with the
prediction of linear theory, and confirms the role of the Obukhov length which for
the data plotted here is L+

O � 250
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Fig. 8.2 (continued)
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While linear theory predicts a larger impact of stratification at larger wavelength,
a decrease of PSD at the very large scales is not be found here. Already under neu-
tral stratification, the spatial organization of the outer layer leaves a footprint in the
logarithmic layer (Chap.6, Sect. 6.3.3 and Fig. 6.11). This is even more so for the
intermediately stable case I310LH, where around z+ � 10 the PSD of the stream-
wise velocity increases beyond that in the neutrally stratified case for particular
modes at wavelengths larger than δ (Fig. 8.4). This intensification of the large-scale
structure in the surface layer is not present in φww insinuating a non-turbulent mech-
anism is at play here. The angle along which the laminar and turbulent patches are
oriented is estimated to be around 23◦ clockwise with respect to the geostrophic
wind. This is the same orientation that is observed for the large-scale outer-layer
structures under neutral stratification (Chap.6, Fig. 6.11). The dominant wavelength
λ of these smooth patches is also seen in the flow visualizations (Fig. 8.2) where the
smooth low-velocity regions are spaced by 2–5δ.

What sets the scale of these dominant large-scale structures? The power spec-
tra in Fig. 8.4 show that—when expressed in inner scalings (λ+)—the position of
the large-scale modes in the spectrum shifts whereas the position of these modes
expressed in terms of δ, the boundary layer depth scale (vertical blue lines), does not
change. This behavior shows that thesemodes are set by outer scales, and do not scale
with the wall unit. When expressed in wall units based on the local-in-time u�(t),
the length scale of these large-scale motions is independent of the Reynolds number
(spectra at Re = 500 also exhibit amaximumof the power spectral density atλ � 5δ;
not shown). This illustrates the two-dimensionality of the problem in the parameter
space: With respect to changes of stratification (RiB), the flow is self-similar when
considered with respect ot outer scales. With respect to changes in the Reynolds
number Re, the flow is self-similar when considered with respect to wall scales.

The independence of the large-scale motions of the Reynolds number gives rele-
vant clues about the instability mechanism at work in the present flow under strong
stratification. Given the flow’s globally intermittent nature in the cases with Re =
500, onemight have argued that global intermittency is a transitional-Reynolds-num-
ber effect and as such not relevant at arbitrary Reynolds number. This argumentation
is invalidated by the Re-independent scaling of the mechanism and illustrates the
present work’s relevance for atmospheric applications. A paradoxon in this mecha-
nism is the increased importance under strong stratification of an outer length scale
originating from an inviscid mechanism (where commonly it is argued that vertically
distant layers decouple under increasing stratification). This paradoxon is manifest
in the power spectra which exhibit an increased energy content at wavenumbers
λ > δ due to the very-large-scale mechanism. A substantially decreased energy den-
sity is observed in the intermediate range of wave numbers 200 � λ+ � 700 where
the stratification acts, and we find only very small impact of stability for λ+ � 100.3

3To draw these conclusions, a scale separation of at least three orders of magnitude in the flow is
necessary.

http://dx.doi.org/10.1007/978-3-319-45044-5_6
http://dx.doi.org/10.1007/978-3-319-45044-5_6
http://dx.doi.org/10.1007/978-3-319-45044-5_6
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Fig. 8.3 Contours of decadic logarithm of probability density for the streamwise velocity com-
ponent u (upper Panel), the spanwise velocity component v (central panel) and the buoyancy
normalized between 0 and 1 (lower panel); the mean is shown as black dashed line. Left column
shows case I150LH, central column I310LH, right column I620LH
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Fig. 8.4 Power spectral density of u, v andw normalizedwith themaximumof the neutral reference
over all wavenumbers and heights. Shading is for case I310LH at t− � 0.25, contours show the
neutral case N1000. All wavenumbers and heights are normalized by the local-in-time wall unit
ν/u�

8.2 Critical Stability

When discussing the impact of stability in an atmospheric context, the Obukhov
length LO (Eq. 2.13c) is a ubiquitous measure. It can be interpreted as a length scale
above which stratification exerts substantial damping forces to an eddy; hence, L+

O ,
the inverse of the gradient Richardson number, RiG , at the surface, is a measure of
the biggest possible scale separation in a stratified flow. Introducing L+

O := LOu�/ν,
Flores and Riley (2011) indeed suggest that L+

O is the relevant large scale when a
Reynolds number is sought that takes into account the effect of stratification. The
time series of L+

O presented in Fig. 8.5a illustrate once more that the set of simu-

http://dx.doi.org/10.1007/978-3-319-45044-5_2
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(a) (b)

Fig. 8.5 a Temporal evolution of the Obukhov length L+
O for all simulations listed in Table7.1.

Cases with Re = 500 are shown as dashed opaque lines, cases with Re = 1000 as full lines. The
time axis measures time since the flow is exposed to any kind of stratification, i.e. the cases started
from a stratified initial condition do not start at t = 0 but at the IC time listed in Table8.1. b
Scatter plot of �z (Eq.8.1) normalized with �z,neutral versus L

+
O

lations carried out spans a wide range of stratification from L+
O on the order of 10

to L+
O on the order of several thousand, commensurate with several boundary layer

depths δ+. The Obukhov length depends on both changes in the friction velocity and
changes in the surface gradient. In case I620LH—due to a sudden increase of the
stratification—, turbulence collapses rapidly, and u� drops by about 50% before the
viscous weakening of the surface gradient sets in, which results in an anomalous
drop of L+

O . In all the other cases, L+
O increases monotonically with time which is

mainly due to a decrease in the surface buoyancy gradient, but supported by a small
increase in the wall friction u� when the stratification weakens.

The vertical component of vorticity r.m.s. integrated over the buffer layer

�z :=
∫ 30

10
〈ω+

z ω+
z 〉dz+ (8.1)

is normalizedwith the corresponding value of neutral stratification and plotted versus
the Obukhov length L+

O in panel (b) of Fig. 8.5. �z is a very sensitive measure of
turbulent mixing, and it is less sensitive to large-scale non-turbulent motions under
very strong stratification than for instance the TKE as shown in Chap.7. The behavior
of �z may be discussed in terms of three ranges of L+

O as indicated by the shading
in Fig. 8.5b:
• Below L+

O � 200, turbulence may not be sustained, and �z decreases until it has
reached zero or passed the threshold.

• In the range 200 < L+
O < 800 the trajectory that a simulation takes in the L+

O × �z

space depends on its initial condition, i.e. it is not determined by L+
O and �z

alone and trajectories may cross. If the level of turbulence is sufficiently high, and
the background stratification is sufficiently small, the flow may recover as in the

http://dx.doi.org/10.1007/978-3-319-45044-5_7
http://dx.doi.org/10.1007/978-3-319-45044-5_7
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cases with RiB < 0.62. If the level of turbulence in the boundary layer is already
significantly reduced and the boundary layer is stratified as in the case I620LH,
the turbulence collapses. Once the turbulence has collapsed, the flow stays laminar
until L+

O has grown beyond some threshold much larger than 200.
• Above L+

O � 800 the flow recovers irrespective of the initial condition, at least for
the cases considered here.

The hysteresis in the intermediate range of L+
O described above is indicative of a

non-linear instability mechanism: a perturbation beyond a threshold magnitude is
necessary to keep the flow turbulent while it is linearly stable, and this threshold
magnitude depends on the value of L+

O . The intermediate range of L+
O is precisely

the range inwhich the flow is globally intermittent. Amorphologically similar type of
intermittency is also observed in a number of other flows including planeCouette flow
(Deusebio 2015), channel flow under the impact of stabilizing rotation, buoyancy and
magnetic forces (Brethouwer et al. 2012) but also pipe flows (Hof et al. 2010). In the
latter, the occurrence of laminar patches has been linked successfully to a non-linear
stability mechanism in alinearly stable flow, which hints at a very general mechanism
behind what is now calledweak turbulence (Mahrt 2014) in the atmospheric context.

Since a collapse of turbulence is caused by the absence of production in the buffer
layer, �z is indicative of such a collapse, and the finding that it is governed by
L+
O is supportive of recent claims by Flores and Riley (2011) and Deusebio (2015)

that the collapse of turbulence is governed by L+
O . The clear distinction of three

ranges of LO is only possible here due to the use of ν/u� for normalization. When
plotted against L−

O , the data from cases with Re = 500 would shift to the right by
a ratio δ+(Re = 1000)/δ+(Re = 500) � 1399/487 with respect to that from the
cases with Re = 1000; a clear distinction of the behavior of �z based on LO is then
impossible. The critical range of L+

O can be interpreted as a critical range of heights
(it would be that range of heights below which the Obukhov length must not fall for
the flow to remain turbulent). When expressed in outer scalings, this critical range
of heights depends on the Reynolds number, and it is 0.4 � z− � 2.0 for Re = 500
and 0.15 � z− � 0.5 at Re = 1000. While this does not contradict the findings of
Nieuwstadt (2005) and van de Wiel et al. (2012), the sensitivity of this range to the
Reynolds number illustrates that a scaling in terms of inner units is appropriate here.

The data in Fig. 8.5a also demonstrate that the bulk Richardson number is not an
appropriate parameter to study the collapse of turbulence in the vicinity of the surface
as anticipated in Sect. 2.2.3: it does not capture effects of changes in the Reynolds
number appropriately. For similar bulk Richardson numbers, a very different evo-
lution of L+

O is found. In the present set-up, L+
O is a more appropriate parameter to

retain the strength of the effect of stratification on turbulence in the surface layer
when changing the Reynolds number. In our set-up, the initial condition for the sim-
ulations where the buoyancy is initialized from a synthetic field (cf. Chap. 2) is such
that the buoyancy gradient ∂zb/B0 at the surface is directly proportional to RiB . To
keep L+

O constant when the Reynolds number changes, this requires

RiB ∝ ν−1 (8.2)

http://dx.doi.org/10.1007/978-3-319-45044-5_2
http://dx.doi.org/10.1007/978-3-319-45044-5_2
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Such a dependency on the viscosity is not a low-Re-effect, but consequence of a set-
up where the stratification is concentrated into a very thin layer close to the surface.
Physically, this means that the collapse of turbulence is a near-surface process and as
such governed by near-surface parameters and scalings. While the scale-separation
across the boundary layer (as indicated by RiB and Re) might be large, it is the
stratification at the surface, i.e. L+

O , to which the flow responds on a short time
scale and which governs the turbulence dynamics in the buffer layer. The buffer
layer is the major source region of turbulence in a wall-bounded flow. Hence, L+

O
can be interpreted in terms of a critical Reynolds number, and it is not surprising
that L+

O � 200 is a limit for the existence of turbulence—similar in magnitude to
the critical Reynolds number in neutrally stratified Ekman flow Recrit = 115 (Lilly
1966). Another possible interpretation is that in terms of a minimal flow unit, where
the critical box size is also of the order of 102 wall units.

8.3 Quantification of Intermittency

In the above sections, I show that the flowmay become globally intermittent, and that
this global intermittency is not a transitional-Re effect, but a phenomenon intrinsic
to the flow at large stability. The above investigation of critical stability in terms of
L+
O reveals that global intermittency may be relevant over a significant fraction of

the Re × RiB parameter space, namely that fraction where L+
O may be in the range

200 � L+
O � 800. The coexistence of turbulent and laminar patches of fluid in this

part of the parameter space poses limitations to a conventional statistics approach as is
already demonstrated in the limit of neutral stratificationwhere external intermittency
impacts on statistics in the surface layer. In a globally intermittent flow, a substantial
fraction of the flow is non-turbulent, even in the vicinity of the surface. Global
intermittency can hence be quantified in terms of the extent of laminar patches in
the vicinity of the surface where in absence of strong stabilizing body forces a wall-
bounded flow is turbulent-throughout. The flow is then understood to be composed
of two partitions, a laminar and a turbulent one. If the laminar partition has non-zero
extent, statistics may be strongly influenced by the alternation of means between
the turbulent and non-turbulent flow partition. As demonstrated below, the separate
study of statistics in the turbulent and non-turbulent partitions of the flow improves
understanding of re-laminarization and subsequent recovery.

A distinction between regions of turbulent and non-turbulent flow based on vor-
ticity has proven difficult for a flow where turbulence is absent even close to the
surface. This is due to high values of background enstrophy and may be overcome
by a filter approach. Here, the filters (Eq. 8.4) are introduced, and statistics are com-
pared between unfiltered as well as high-pass and low-pass filtered fields. Based on
the high-pass filtered fields, intermittency factors are presented. A comparison of
high- versus low-pass filtered fields suggests that the filter operation at length scale
δ constitutes a spectral decomposition of the flow field into turbulence and wave
modes of the flow.
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8.3.1 Definition of Flow Filters

The flow is partitioned based on the vorticity, using the intermittency function

γ(z) = 〈H(ω − ωthreshold)〉, (8.3)

where H (cf. Sect. 6.3.1, Eq. 6.4) is the Heaviside function, ω is the local vortic-
ity magnitude, and 〈·〉 denotes a horizontal average (Pope 2000). As a threshold
6.9ωrms(δ95) is used, where ωrms(δ95) is the r.m.s. of the vorticity at z = δ95 � 0.66δ.
As demonstrated by a comprehensive body of work following Corrsin and Kistler
(1955), this approach is well-suited to detect external intermittency (Pope 2000).
Section6.3 demonstrates that the approach is also well-suited to detect external inter-
mittency in neutrally stratified Ekman flow. The same section also investigates how
γ(z) depends ωthreshold. The detection of global intermittency under stable stratifica-
tion based on thismethod is, however, difficult: The contribution of themean velocity
gradient to the total vorticity of the flow field dominates the turbulence contribution
to the vorticity close to the wall (Fig. 8.7b). To overcome the problem of partitioning
the flow, a horizontal high-pass filter of the velocity fields in Fourier space is used.
The filter transfer function is

Fδ(kh) = 1

2

{
erf

[
ln

(
kh
kδ

)]
+ 1

}
, with kh =

√
k2x + k2y, (8.4)

which is illustrated in Fig. 8.6. Here kx and ky are wavenumbers in the stream- and
span-wise directions and the filter wavelength is set as kδ = 2π/δ. The filtersF±

δ are
then defined by the filter transfer function ±(Fδ − 0.5) + 0.5. That is, the spectral
decomposition of the flow fields into

uhi = F+
δ {u} and ulo = F−

δ {u} = u − uhi (8.5)

Fig. 8.6 Filter transfer
function versus normalized
wavenumber k−

http://dx.doi.org/10.1007/978-3-319-45044-5_6
http://dx.doi.org/10.1007/978-3-319-45044-5_6
http://dx.doi.org/10.1007/978-3-319-45044-5_6


130 8 Flow Organization and Global Intermittency Under Strong Stratification

is considered.When the filterF+ is applied to the field, the enstrophy in the quiescent
patches is reduced to a much lower level than inside turbulent patches (Fig. 8.7c vs.
d). The structure inside the turbulent patches is not affected by the filter (the panels (a)
and (b) are visually identical); hence this filter is in principle suitable to overcome the
problem of partitioning the globally intermittent flow close to the surface. A second
even simpler filter is the Reynolds decomposition where upper-case letters denote
averages and lower case letters fluctuations.

8.3.2 Detection of Global Intermittency

When attempting to quantify global intermittency, vorticity appears as an attractive
quantity because of its pivotal role in locally defining turbulence. In the neutrally
stratified flow, contributions from the high-pass filtered field uhi dominate the r.m.s.
of the vorticity fluctuations ωrms at all heights (Fig. 8.8a). The vorticity r.m.s. resid-
ing in the low-pass filtered field ulo is less than one third of that contained in uhi.
The same holds for the weakly stratified case, supporting further the aforementioned
and well-established similarity between the neutral and weakly stably stratified flow
regimes. When stratification is increased to RiB = 0.62, much less vorticity r.m.s. is
contained in uhi, in particular close to the wall (z− < 0.2). There, vorticity r.m.s. is
largely explained by the low-pass-filter contribution. A contributor to this vorticity
r.m.s. are large-scale coherent motions. These large-scale modes belong to the spec-
trum of turbulent motions in the sense that the flow as a whole is turbulent. Within
laminar patches, the flow does, however, not seem quite turbulent. This situation is
not any different from the turbulent jets considered in the works of Townsend and
Corrsin&Kistler, but the standard indicator function of turbulence—based on the
vorticity of the flow field u—does not work because ’external’ intermittency occurs
in the vicinity of the wall. Here, turbulent sub-volumes are not the only contributor to
vorticity, but also the non-turbulent sub-volumes possess substantial vorticity which
determines the vorticity of the full field u inappropriate to locally indicate small-scale
activity.

Profiles of TKE (Fig. 8.8b) also show the change from fluctuations dominated
by small-scale activity in the neutrally and weakly stratified cases to fluctuations
dominated by large-scale activity under strong stability. TKE, however shows a strong
buoyancy oscillation (Chap. 7) and concomitantly is less sensitive to the absence
of small-scale turbulent motion close to the wall. Therefore, intermittency factors
presented in the following are based on the vorticity.

When the flow is partitioned based on unfiltered fieldsmost of the flow is turbulent,
even in the strongly stable regime (Fig. 8.9). This classical method of measuring
external intermittency thus not only fails to detect the localized absence of turbulence
close to thewall evident in Fig. 8.7b, d, but also gives it a higher turbulent area fraction
close to the wall (up to z− = 0.1 in Fig. 8.9) when compared to the neutral reference.
When aReynolds decomposition is used (Fig. 8.9), the intermittency factor is reduced
slightly in the buffer layer (to ≈0.95 for the case I310LH and to ≈0.9 for the case

http://dx.doi.org/10.1007/978-3-319-45044-5_7
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(a) (b)

(c) (d)

(e) (f)

Fig. 8.7 Logarithm of vorticity modulus, ln ζ−, at z+ = 15; Left column shows ln ζ− of the field
u, right column of the field uhi. Only a subset of size 3δneutral × 3δneutral (≈ 1/36 of the total box)
is shown. Tick marks are spaced by δneutral. Upper panel RiB = 0.15, (t− � 1.50, L+

O � 1500)
Central panel RiB = 0.31, (t− � 0.25, L+

O � 200), Lower panel RiB = 0.62, (t− � 2.10, L+
O �

400)
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(a) (b)

Fig. 8.8 Vertical profiles of the vorticity r.m.s. (a) and TKE (b) of the unfiltered (thin, solid),
high-pass filtered (thick, solid) and low-pass filtered (dashed) field. The second vertical axis (z−)
is valid for the neutrally stratified case only

I620LH). This small reduction of the turbulent area fraction by only 10% does not
represent an appropriate measure of global intermittency in the flow, which reflects
the large-scale contribution to vorticity r.m.s. in the surface layer. If high-pass filtered
fields are used to partition the flow, the localized absence of turbulent motion in a
vast part of the inner layer in case I620LH is correctly detected. Similarly, a non-
turbulent fraction around 15% in the case I310LH is consistent with the fields
presented in Figs. 8.1, 8.2 and 8.7. At the same time, for the neutrally stratified case,
the consideration of filtered fields has no impact on γ(z) (Figs. 8.7b and 8.9).

The details of the curves γ(z) are sensitive to the choice of ωthreshold because of
a vorticity source in the outer-flow region due to rotation of the reference frame
(Chap.6, Sect. 6.3). This vorticity source makes the interface between turbulent and
non-turbulent flow in terms of vorticity less sharp than commonly observed in flows
without this source. The effect of this vorticity source is a shift of γ(z) along the direc-
tion Oz when ωthreshold is varied. A Reynolds-number-dependency study in Chap.6
shows that the profiles γ(z) are independent of Re when ωthreshold is defined in terms
of the vorticity r.m.s. at some fixed height in outer scales z−, i.e.

ωthreshold = C0ωr.m.s.(zref); (8.6)

with z−
ref = C1; C0,C1 ∈ R

http://dx.doi.org/10.1007/978-3-319-45044-5_6
http://dx.doi.org/10.1007/978-3-319-45044-5_6
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Fig. 8.9 Intermittency factor γ with a threshold vorticity 6.9ωrms(δ95) calculated from a filtered
(solid thick–F+

δ , dash-dotted–Reynolds decomposition) and unfiltered (solid, thin) field. Coloring
is as indicated in the previous Fig. 8.8. The second vertical axis (z−) is valid for the neutrally
stratified case only

The choice ofC1 andC2 is to some degree arbitrary. ThresholdsC0 andC1 are chosen
here such that the intermittent patches which are clearly visible in flow visualizations
are detected in the enstrophy fields:

C0 = 6.9; C1 = δ95/δ � 0.66 ⇒ ωthreshold = 6.9ωr.m.s.(δ95) (8.7)

(this corresponds to a value of 9.39 in Fig. 8.7). As for any conditioning method, care
must be taken with the choice of the threshold, and the height at which γ drops and
the particular value of γ in the surface layer depends on ωthreshold. Independently of
the threshold, a realistic reduction of the intermittency factor in the vicinity of the
wall is—among the options considered here—only achieved with the high-pass filter
operation F+.

8.3.3 Wave-Like Motions

The high-pass filter operation constitutes a spectral decomposition of the flow into
large-scale wave-like motions and small-scale mixing eddies. This allows to quan-
tify effects of waves on the statistics to a certain extent. In particular under stable
stratification this aids the understanding of small-scale processes whose footprint in
the statistics is otherwise obscured by wave effects or coherent large-scale motions.

By means of the buoyancy flux, the above decomposition into turbulent and wavy
modes of the fields is now demonstrated. Neglecting contributions from the mixed
terms, it is
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(a) (b)

Fig. 8.10 a Residual of the flux 〈bw〉 in the term combining large-scale and small-scale motions
as a fraction of the total flux. b Flux in the raw field 〈bw〉, the high-pass filtered field 〈(bw)hi〉 and
in the low-pass filtered field 〈(bw)lo〉 normalized by σbw := √〈bb〉 〈ww〉. Coloring indicated in
panel (a) is as in previous figures. The second vertical axis (z−) is valid for neutral stratification
only

〈bw〉 � 〈blowlo〉 + 〈bhiwhi〉 (8.8)

within very small deviations (2% within the boundary layer, 5–10% around z = δ
where the flux is very small, Fig. 8.10). In the surface layer of the neutrally andweakly
stratified cases, the buoyancy flux is entirely in the high-pass filtered contribution, i.e.
〈bw〉 � 〈bhiwhi〉. There, the correlation between b and w is relatively large. Only in
the non-turbulent region aloft the turbulent part of the boundary layer, contributions in
the large-scale signalmatter (Fig. 8.10b). Here, the correlation between b andw drops
by one order of magnitude indicating the change to a wave-dominated regime. Under
strong stratification (case I620LH), the turbulence is extinguished, and nearly all the
flux resides in large-scale contributions. This flux is, however, characterized by a very
small—sometimes even negative—correlation coefficient between b and w. In fact,
the net transport

∫ 〈bw〉dt is very close to zero (not shown) in the non-turbulent region
aloft the turbulent part of the boundary layer. Such a small or no correlation between
b and w is a feature of wave motions whereas turbulent motion is characterized
by non-zero correlation between b and w (Sutherland 2010). This behavior of the
correlation coefficient between b and w suggests that the filter operation based on
the length scale δ—as anticipated above—constitutes a decomposition of the flow
into wave and turbulence modes.
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8.4 Conditional Statistics

The capability to detect global intermittency allows to compute conditional statistics
that do not mix up the effects of a decreased intensity of turbulence on the one hand
and a partial re-laminarization of the flow on the other hand. This allows for new
insight into turbulence under strong stratification.

8.4.1 Concentration of Dissipative Flow Structures

It remains unclear, how strong the structure of turbulence changes under very stable
stratification. When considering the flow as a whole, the effect of stratification in
the strongly stable case is tremendous. This might make one expect that the turbu-
lent eddies are fundamentally different from those in the neutrally stratified flow. A
tracer of turbulence is the dissipation of TKE (Fig. 8.11b). In the cases I620LH and
I310LH the dissipation in the entire flow is decreased by about 50% respectively
90%. If, however, solely the turbulent sub-volumes are considered, the dissipation
is reduced by less than 10% with respect to the neutrally stratified flow (Fig. 8.11a).
This finding is consistent with the spectral analysis (Fig. 8.4) and flow visualizations

(a) (b)

Fig. 8.11 a Viscous dissipation rate of TKE of the field u (solid) and conditioned to the turbulent
(dashed, opaque) and laminar (solid, opaque) volume fraction. bVertical component of TKE, 〈ww〉,
conditioned as panel (a). The second vertical axis (z−) is valid for neutral stratification only
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(Figs. 8.2 and 8.7) which already suggest that the morphology of the flow inside a
turbulent patch is very similar to that under neutral stratification.

The concentration of dissipative flow structures into the turbulent patches of the
flow that is illustrated by the conditioned dissipation rate ofTKE is also found in terms
of 〈ww〉 (Fig. 8.11b), but less clearly. The reason for this less clear distinction between
the turbulent and non-turbulent partition are the large-scale structures discussed in
Sect. 8.1. These large-scale structures are more prominent in terms of absolute veloc-
ity than they are in terms of velocity derivatives. Hence the much higher sensitivity
of TKE to such motions which is the reason for a less clear distinction between the
TKE conditioned to the turbulent and non-turbulent flow partition.

The concentration of dissipative structures into a small volume fraction of the flow
has consequences for resolution requirements under stable stratification. A common
assumption when simulating stably stratified flows is that due to a reduced level of
(mean) dissipation the resolution required for a corresponding simulation without
the impact of stratification is always sufficient to study the stable case. In a globally
intermittent flow, the dissipation is, however, not distributed homogeneously on a
large scale and the reduction of the dissipation rate on average must not be mistaken
for an indicator of less strict resolution requirements. A globally intermittent flow
hence requires higher resolution than in a flow with the same averaged dissipation
rate that is turbulent-throughout but with reduced turbulence intensity of individual
turbulent structures. The concentration of turbulence dissipation into sub-volumes
of the flow where turbulence acts vigorously over a relatively short amount of time
may in fact demand an even higher resolution than necessary in a neutrally stratified
flow.

8.4.2 Structural Interpretation

Turbulent and non-turbulent sub-volumes of flow can be attributed to their source
region by analyzing the conditional statistics of buoyancy and velocity. Inside tur-
bulent sub-volumes, the vertical velocity is positive. The streamwise velocity in the
buffer layer is higher and in the rest of the surface layer lower with respect to the
non-turbulent sub-volumes (Fig. 8.12a, b, d, e). This negative–positive combination
of the signal implies decreased shear in the turbulent flow partition. In terms of a
quadrant analysis this shows that turbulent sub-volumes in the surface layer mainly
contribute to stress in the second quadrant (u′ < 0, w′ > 0) while the non-turbulent
sub-volumes contribute to stress in the fourth quadrant (u′ > 0, w′ < 0). Buoyancy
behaves very similar to the streamwise velocity and reduces in turbulent sub-volumes
with respect to their non-turbulent counter-parts (Fig. 8.12c, f). This is a manifesta-
tion of the character of turbulence events as it is suggested by a structural approach to
wall-bounded turbulence (Adrian 2007): Turbulence is sustained by ejections from
below, and the fluid inside these sub-volumes originates from the wall. The fluid in
the non-turbulent partition is entrained from the outer non-turbulent region aloft.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8.12 Vertical profiles of filtered and unfiltered variables conditioned to non-turbulent and
turbulent sub-volumes of the flow. The lines are drawn if the area fraction contributing to a partition
exceeds 1%. The second vertical axis (z−) is valid for the neutrally stratified case only
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This holds also for the scalar and velocity variances (Fig. 8.12g–i): their change
inside the turbulent regions is very small when compared to changes in the total
signal.When considering the secondmoment of streamwise velocity inside the buffer
layer, the total variance in the turbulent field of the cases with RiB ≤ 0.31 is up to
10% larger than the variance inside turbulent and non-turbulent patches. Here, the
contribution of variance from a different mean inside each of the patches is relevant.

A relatively small impact of stratification on the turbulent signal inside turbulent
patches when compared to the impact of stratification on the total signal is consistent
with the concentration of dissipation into the turbulent volume fraction. The nature
of the turbulent signal does not depend on the stratification too strongly, but it is the
intermittent fraction which governs the order-one decrease in turbulent dissipation,
and fluctuation velocities when the flow is exposed to strong stratification.

8.5 Summary

In this chapter, the partial collapse of turbulence in the form of global intermittency
is studied. The flow’s large-scale organization is shown to scale with the outer scale
δ, and not with the wall unit. The localized collapse of turbulence provoking the
presence of these large-scale structures in the buffer and surface layers of the flow
is, however, a surface-layer process and as such governed by inner scalings, namely
the Obukhov length expressed in wall units L+

O .
A conditioning method based on the vorticity of high-pass filtered velocity fields

is developed, and I demonstrate its capability to detect global intermittency in a
stratified Ekman flow over awide range of stratifications. Under neutral stratification,
the modified method yields results identical to those of the standard method based
on the velocity of the full field. In addition, the modified method provides a spectral
decomposition of the flow, and there is evidence that this decomposition is one into
turbulence and wave modes. While this work only examines one particular case
where rotation and strongly stable stratification interact, the concept put forward
here—subject to a tuning of the filter wavelength and the vorticity threshold—also
applies to wall-bounded flow with other stabilizing body forces such as magneto-
hydrodynamic flows. Similarly, the present concept applies to stably stratified shear
layers or rotating flows without density stratification.

The new partitioning method developed here allows for the first time to partition
globally intermittent flow to turbulent and non-turbulent regions and yields new
insight into the dynamics of turbulence under strong stratification: The main impact
of stratification on turbulence is not a change in the dynamics of turbulence in the
regions where the flow is turbulent, but it is rather a confinement of the turbulent area
fraction which is quantified by the intermittency factor that can now be determined
with the above partitioning method. This finding is consistent with the analysis of
flow visualizations, spectra and probability density functions.
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Part IV
Concluding Remarks



Chapter 9
Implications for the Study
of the Atmospheric Boundary Layer

This work is motivated by a lack of process-level understanding in the SBL
(Chap. 1)—a meteorological problem at its core. The direct simulation of a tur-
bulent flow is relatively new in a meteorological context, and the technical framing
of this work is borrowed from an engineering context where DNS as a tool in tur-
bulence research is widely used since decades (Moin and Mahesh 1998). In fact,
part III of this book studies Ekman flow as a fluid-mechanics problem. In the present
chapter, the key findings of this work are outlined in a more applied context, and
their implications for work on the SBL are discussed.

9.1 The Rough-Wall Problem and the Wall Unit

A fundamental difference of the set-up used here with respect to a real boundary
layer is the character of the wall. In the present simulations, it is infinitely aerody-
namically smooth, and the local dissipation, set by the kinematic viscosity ν, governs
the extent of the smallest length scale relevant to the flow. This length scale is the
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Fig. 9.1 Vertical profile of
the Kolmogorov scale η

calculated from the
dissipation rate of turbulent
kinetic energy ε at each
height

Kolmogorov scale η and was originally introduced for homogeneous isotropic tur-
bulence by Kolmogorov (1941). In the present inhomogeneous anisotropic case, η is
not single-valued, but described by a profile—a reflection of the changing character
of turbulence across the depth of the PBL. For z+ < 15, that is, in the viscous and
buffer layers, η+ � 1.5 independent of height (Fig. 9.1).

The idealization of an infinitely smooth wall is not even attainable in laboratories,
and a length scale zr related to the roughness of the surface enters in the set of
parameters of the problem. The presence of roughness affects the range of scales
available for turbulent motion: local boundary layers with different dynamics form
in the rough region, and if zr becomes sufficiently large, the smallest scale relevant
to the turbulent PBL as a whole is no longer η, but zr . Provided the roughness is
homogeneously distributed and zr � δ, it has been demonstrated that the scaling laws
for smooth walls also hold over rough surface when η is replaced by an appropriate
roughness length zr (Monin and Yaglom 1975; Jiménez 2004). Hence, all vertical
profiles shown in this dissertation in terms of the wall unit may as well be read in
terms of the roughness length. Not only applies this to vertical profiles, but also to the
range of critical stability 200 < L+

O < 800. This alternative interpretation explains
why global intermittency is frequently found in atmospheric flow even if the surface
heat flux is rarely large enough for L+

O = LOu�/ν to become as small as 800 when
expressed in terms of the viscous wall unit: LO/zr may be orders of magnitude
smaller. This illustrates an important role of roughness for the effective stability of
an atmospheric flow: While so far roughness is often seen as a potential trigger of
turbulence, the increased level of mixing near the surface may deem the flow over a
rough wall more sensitive to static stability than it would be over a smooth wall.

The presence of roughness does not change the Reynolds number Re = GD/ν

(cf. Chap. 2) of the flow or the Kolmogorov scale η, but it does affect the range of
scales available to turbulent motion in the immediate vicinity of the surface. This
means, the effective Reynolds number (measuring the range of scales available in
the buffer layer) for a PBL over a rough surface is potentially much lower than
Reτ = δ+ = u�δ/ν; it may in fact be expressed by δ/zr .

http://dx.doi.org/10.1007/978-3-319-45044-5_2
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9.2 Convergence of a Flux Measurement Based
on a Single-Point Probe

In Sect. 6.2 the impact of coherent motion on estimates ofmean profiles and turbulent
fluxes in the surface layer is quantified. It is found that it may be as large as 10%when
averaging over less than a tenth of the inertial period. Such turbulent motions at very
large scales have been investigated before, but their impact on tower measurements
in boundary layers has so far not been quantified. This quantification of the flux-
underestimation due to large-scale turbulent processes is possible as a consequence of
the complete control over the physical set-upwhen investigating theflownumerically.

No conclusive statement on the question, Do the largest scales of the turbulent
spectrum (at length scales of the order of several δ) persist when the symmetry of the
set-up is broken by external processes and forcing such as topography or synoptic
effects? is possible. The present results, however, provide a limit in the homogeneous
case, and as such are of great utility for conceptual studies and idealized numerical
simulations of the problem. Moreover, they imply contributions to the turbulent
signal from scales that would actually be counted as belonging to the meso-scale
regime even though no source of meso-scale motion exists in the present set-up.
These large-scale motions may affect observations as well as turbulence-resolving
and Reynolds-averaged simulations:

• In field campaigns turbulent fluxes are often averaged over rather short periods
of time (much less than an hour) to avoid effects of synoptic or day-time non-
stationarity; they likely miss out significant contributions from the large scales.
Charuchittipan et al. (2014) discuss the impact of such errors on the long-standing
problem of the surface energy-balance closure.

• Given a good turbulence representation at the small scales, LES can be expected
to cover the large-scale end of the turbulent spectrum reasonably well, and repre-
sent these very-large-scale motions if the memory in the small scales is resolved
properly.

• In Reynolds-averaged flow simulations, where all turbulence is parameterized, the
neglect of these significant contributions may also have an effect, and it may be
one reason why enhanced-diffusivity schemes are still needed, and also recently
decreases in artificial diffusion have been found to be detrimental for the perfor-
mance skill of large-scale weather prediction models (Sandu et al. 2013).

9.3 Relation to Monin–Obukhov Similarity Theory

When the surface layer of theSBL is considered, the lawof thewall ∂z
〈
u+〉 = (κz+)−1

is not strictly valid any more since stratification enters the scaling. In Monin–
Obukhov similarity theory, the impact of stratification is considered via a non-dimen-
sional stability correction function based on the height ζ := z/LO (Obukhov 1971).
A common formulation for the gradient of velocity in the stratified surface layer is

http://dx.doi.org/10.1007/978-3-319-45044-5_6
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κz+

u�

∂U

∂z+ = �M . (9.1a)

Assuming a stability correction function �M(ζ ) := 1 + βζ , it is

∫ z

z0

�M
∂z

′+

z ′+ =
∫ z

z0

d ln(z′+) + �M − 1 − β
z0
LO

. (9.1b)

The term βz0/LO is the stability correction at z = z0, the lower end of the surface
layer, and onemay assume�M(z = LO) = 0. Hence, using the common assumption
z+
0 = 1,

�M − 1 = κ
(
U+(z) − κ−1 ln z+) = βζ . (9.1c)

Equation (9.1a) assumes a logarithmic velocity profile in the neutral reference case.
In Chap. 6 it is shown that the velocity profile under neutral stratification fits a
logarithmic law much better when the effect of external intermittency is taken into
account and only the velocity from turbulent regions is considered for the averages;
the reference profile used here is that conditioned to turbulent regions, i.e.

�M − 1 = κ
(
U+(z) −U+

neutral,turb(z)
)

(9.1d)

with the von-Kármán constant κ = 0.4.
When data in the range 20 < z+ < 50 and conditioned to the turbulent regions of

the flow are considered, the stability correction estimated from the simulation (full
circles in Fig. 9.2) agrees well with the least-squares fit �M − 1 = 5.8ζ − 1/40.
As in the case of neutral stratification, this is not the case when only the laminar
patches are considered, and the data fit worse when the whole average is used, and
not only the turbulent partition. The small offset 1/40 of�M −1, can be explained by
the neglect of the lower boundary condition βz0/LO . The fit explains 98.5% of the
variance in the data conditioned to the turbulent partition. This agrees well with data
obtained from atmospheric measurements (β = 5.3; Högström 1996) and channel-
flowDNS (β = 4.5; van deWiel et al. 2008).Agreement of the numerical simulations
with Monin–Obukhov similarity theory supports their relevance for atmospheric
conditions—despite the difference in Re.

9.4 Global Intermittency and Turbulence Collapse

In agreement with previous work on the SBL and canonical flow studies under stable
stratification, the present results show that the absence of turbulence in extended
regions of flow, even close to the surface, is a ubiquitous phenomenon under very
strong stratification (Chaps. 7 and 8). Once turbulence cannot be fully sustained,
the intermittency function (i.e. the turbulent area fraction and the relative size of the

http://dx.doi.org/10.1007/978-3-319-45044-5_6
http://dx.doi.org/10.1007/978-3-319-45044-5_7
http://dx.doi.org/10.1007/978-3-319-45044-5_8
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Fig. 9.2 Stability correction function �M − 1 for heights 20 < z+ < 50 conditioned to turbulent
(filled circles) and non-turbulent (crosses) parts of the flow for the three cases I150LH (blue),
I310LH (cyan), I620LH (orange). Squares show data for the full field. The stability correction
is calculated with respect to the corresponding partition from the neutrally stratified flow. Height
and Obukhov length are normalized respectively calculated with global instantaneous values of the
wall friction u�

non-turbulent region) is determined by the Obukhov length expressed in wall units
L+
O , a surface property of the system that relates to the surface heat flux (Sect. 8.2).

Thus, it is demonstrated that global intermittency can arise from a global constraint
on the flow, for instance the exceedance of the maximum sustainable heat flux as
suggested in the literature (van de Wiel et al. 2012; van de Wiel and Moene 2012).
Local perturbations, such as surface heterogeneities—or large-scale dynamics as
in the present case—, simply determine the spatio-temporal distribution of global
intermittency (Sun et al. 2012; Acevedo and Fitzjarrald 2003; Sun et al. 2004), but
they are not necessary as a trigger.

The relevance of L+
O = u3�/(b�ν) for the collapse of turbulence that this dis-

sertation provides strong evidence for, is consistent with a cubic dependency of the
threshold for a turbulence breakdown found in an observational study by van deWiel
et al. (2012). The quantitative dependency of the proposed mechanism on Re can
be elucidated in future work. Nonetheless, this simplified set-up is suited to study
dynamics of the stably and very stably stratified PBL. This analogy over a cascade
of complexity—ranging from the canonical-flow problem of stable channel flow via
rotating Couette and stable Ekman flow to the PBL—encourages further investiga-
tion of the fundamental aspects of stably stratified turbulence in rotating reference
frames.

Owing to the absence of heterogeneities in the numerical set-up, the spatio-
temporal pattern of global intermittency close to the surface is caused by a large-
scale structure in the outer layer of the flow. The characteristic length scale of these
large-scale motions is found here to scale with the boundary-layer depth scale δ,
and it is on the order of 1–2δ (Sect. 8.1). A very similar phenomenon is observed

http://dx.doi.org/10.1007/978-3-319-45044-5_8
http://dx.doi.org/10.1007/978-3-319-45044-5_8
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Fig. 9.3 Simplified and
idealized parameter space for
stably stratified Ekman flow
studied in terms of the
Normalized Obukhov length
L+
O and Friction Reynolds

number Reτ

in homogeneously stratified shear turbulence and rotating Couette flow (Chung and
Matheou 2012; Brethouwer et al. 2012), in both of which no local or coherent pertur-
bations are present. This agreement among a number of different flow configurations
suggests there is a very general mechanism behind what is recently called‘weak
turbulence’ in an atmospheric context (Mahrt 2014). And it furthermore suggests
relevance of the global-intermittency mechanism at atmospheric scale.

In terms of the two-dimensional parameter space spanned by RiB and Re (intro-
duced in Chap. 2), the parameter governing stratification should be replaced by L+

O
when global intermittency is considered. This compensates for a dependency of the
stratification at the surface on both RiB and Re. When the characterization of the
problem in terms of external parameters is not the primary objective, it is further
useful to employ Reτ = u�δ/ν as the governing Reynolds number (Fig. 9.3). In the
simplified set-up spanned by the two non-dimensional parameters L+

O and Reτ , the
use of the normalized Obukhov length L+

O compensates for the viscid dependency
of RiB . Given the above findings, we suppose that there is a boundary in this phase
space beyond which turbulence cannot be sustained; the larger Reτ the smaller is the
L+
O (and the larger is 1/L+

O ) for which this is the case. This boundary is qualitatively
illustrated by the red dashed line in Fig. 9.3. For large Reτ , we would assume that
the critical L+

O converges towards a finite non-zero limit on the order of 800 (solid
red line). The exact Reynolds-number dependency of this phase boundary cannot be
elucidated with the data available here.

A second finding is the occurrence of global intermittency in the flow, and onemay
ask, For which part of the parameter space does this global intermittency occur? The
qualitative agreement of the occurrence and character of global intermittency with
other canonical flowspoints towards a generalmechanismwhichmaybe similar to the
one observed in pipe flow where a similar type of intermittency occurs due to a non-
linear instability in a linearly stable flow. Following Richardson’s straightforward
argumentation (Richardson 1920), linear stability is established once RiB exceeds a
particular threshold. From the definitions of L+

O , Reτ and RiB it follows that

http://dx.doi.org/10.1007/978-3-319-45044-5_2
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1

L+
O

∝ 1

Reτ

for RiB = const. (9.2)

This implies a widening intermittent region in the L+
O − Reτ parameter space for

increasing Reτ (cf. Fig. 9.3). This widening does not contradict physical intuition
but is a consequence of the strong correlation between L+

O and Reτ . In particular, it
does not mean that at fixed stratification a turbulent flow may become laminar when
the scale separation changes because that would imply a change of L+

O as well.
There are two ways in which a transition from turbulent to laminar might happen:

Either through stronger stratification, that is changing only L+
O , or via a decrease in

Reτ . Once in the fully turbulent regime, it is unlikely that the fundamental character
of this transition changes—whether it occurs by changing L+

O or Reτ . Such a change
in the character of transition would require high-Re turbulence in the SBL to be
caused by a different instability than in the numerical simulations at intermediate
Reynolds number. Such a mechanism is theoretically possible as a consequence of a
series of bifurcations at high Reynolds number. The agreement of numerical results
which is demonstrated within this dissertation (and also at other places), however,
deems the occurrence of such additional instability mechanisms at atmospheric scale
highly unlikely. While it is shown in this work that this transition is governed by the
parameter L+

O , and occurs in the range 200 < L+
O < 800, the exact properties of

this transition may depend on Re similarly to u� and α (Chap. 6) and as observed in
stably stratified shear and channel flow (Jacobitz et al. 1997; Flores and Riley 2011).

References

Acevedo, O. C., & Fitzjarrald, D. R. (2003). In the core of the night-effects of intermittent mixing
on a horizontally heterogeneous surface. Boundary-Layer Meteorology, 106(1), 1–33. doi:10.
1023/A:1020824109575.

Brethouwer, G., Duguet, Y., & Schlatter, P. (2012). Turbulent-laminar coexistence in wall flows
with coriolis, buoyancy or Lorentz forces. Journal of Fluid Mechanics, 704, 137–172.

Charuchittipan, D., Babel, W., Mauder, M., et al. (2014). Extension of the averaging time in eddy-
covariance measurements and its effect on the energy balance closure. Boundary-Layer Meteo-
rology, 152, 303–327. doi:10.1007/s10546-014-9922-6.

Chung, D., &Matheou, G. (2012). Direct numerical simulation of stationary homogeneous stratified
sheared turbulence. Journal of Fluid Mechanics, 696(410), 434.

Flores, O., & Riley, J. J. (2011). Analysis of turbulence collapse in the stably stratified surface layer
using direct numerical simulation. Boundary-Layer Meteorology, 139(2), 241–259. doi:10.1007/
s10546-011-9588-2.

Högström, U. (1996). Review of some basic characteristics of the atmospheric surface layer.
Boundary-Layer Meteorology, 78(3–4), 215–246. doi:10.1007/BF00120937.

Jacobitz, F. G., Sarkar, S., & van Atta, C. W. (1997). Direct numerical simulations of the turbulence
evolution in a uniformly sheared and stably stratified flow. Journal of Fluid Mechanics, 342,
231–261. doi:10.1017/S0022112097005478.

Jiménez, J. (2004). Turbulent flows over rough walls. Annual Review of Fluid Mechanics, 36,
173–196.

http://dx.doi.org/10.1007/978-3-319-45044-5_6
http://dx.doi.org/10.1023/A:1020824109575
http://dx.doi.org/10.1023/A:1020824109575
http://dx.doi.org/10.1007/s10546-014-9922-6
http://dx.doi.org/10.1007/s10546-011-9588-2
http://dx.doi.org/10.1007/s10546-011-9588-2
http://dx.doi.org/10.1007/BF00120937
http://dx.doi.org/10.1017/S0022112097005478


150 9 Implications for the Study of the Atmospheric …

Kolmogorov, A. N. (1941). Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk
SSSR, 434(1890), 15–17.

Mahrt, L. (2014). Stably stratified atmospheric boundary layers.Annual Review of FluidMechanics,
46, 23–45.

Moin, P., &Mahesh, K. (1998). Direct numerical simulation: A tool in turbulence research. Annual
Review of Fluid Mechanics, 30, 539–578.

Monin, A. S., & Yaglom, A. M. (1975). Statistical fluid mechanics. In Mechanics of Turbulence
(Vol. I). Dover Publications, Inc.

Obukhov, A. M. (1971). Turbulence in an atmosphere with a non-uniform temperature. Boundary-
Layer Meteorology, 2(1), 7–29.

Richardson, L. F. (1920). The supply of energy from and to atmospheric eddies. Proceedings of the
Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character,
97(686), 354–373.

Sandu, I., Beljaars, A. C. M., Bechtold, P., et al. (2013). Why is it so difficult to represent stably
stratified conditions in numerical weather prediction (NWP) models? Journal of Advances in
Modeling Earth Systems, 5(2), 117–133. doi:10.1002/jame.20013.

Sun, J., Lenschow, D. H., Burns, S. P., et al. (2004). Atmospheric disturbances that generate inter-
mittent turbulence in nocturnal boundary layers.Boundary-LayerMeteorology, 110(2), 255–279.

Sun, J.,Mahrt, L., Banta, R.M., et al. (2012). Turbulence regimes and turbulence intermittency in the
stable boundary layer during CASES-99. Journal of the Atmospheric Sciences, 69(1), 338–351.
doi:10.1175/JAS-D-11-082.1.

van de Wiel, B. J. H., Moene, A. F., De Ronde, W. H., et al. (2008). Local similarity in the stable
boundary layer and mixing-length approaches: consistency of concepts. Boundary-Layer Mete-
orology, 128(1), 103–116. doi:10.1007/s10546-008-9277-y.

van de Wiel, B. J. H., Moene, A. F., Jonker, H. J. J., et al. (2012). The minimum wind speed for
sustainable turbulence in the nocturnal boundary layer. Journal of the Atmospheric Sciences,
69(11), 3116–3127. doi:10.1175/JAS-D-12-0107.1.

van de Wiel, B. J. H., & Moene, A. F. (2012). The cessation of continuous turbulence as precursor
of the very stable nocturnal boundary layer. Journal of the Atmospheric Sciences. doi:10.1175/
JAS-D-12-064.1.

http://dx.doi.org/10.1002/jame.20013
http://dx.doi.org/10.1175/JAS-D-11-082.1
http://dx.doi.org/10.1007/s10546-008-9277-y
http://dx.doi.org/10.1175/JAS-D-12-0107.1
http://dx.doi.org/10.1175/JAS-D-12-064.1
http://dx.doi.org/10.1175/JAS-D-12-064.1


Chapter 10
Résumé

The stably stratified boundary layer was early recognized as a fluid-mechanics prob-
lem of fundamental interest. Nonetheless, the study of stratified turbulence and the
stable boundary layer have taken different paths: Stratified turbulence is mostly stud-
ied as a canonical-flow problem in fluid mechanical engineering. On the contrary,
the stably stratified boundary layer is commonly investigated as a parameterization
problem—motivated by the need for a working turbulence closure in general cir-
culation and numerical weather prediction models. This gave rise to a number of
fixes in turbulence closures which are motivated by a large-scale point of view. Still
recently, a lack of fundamental understanding in stratified turbulence is identified as
a pertinent challenge in understanding the boundary layer. These two paths are con-
solidated here applying systematically the direct numerical simulation of a turbulent
flow, a tool widely used in fluid mechanical engineering, to study the stably stratified
boundary layer.

When stratification in the boundary layer becomes strong enough to cause the—
in time and space localized—absence of turbulence, the calculation of motions over
the full spectrum of turbulence is a great advantage. A well-defined and easily-
controllable set-up, namely Ekman flow over a smooth surface at a fixed temperature,
is introduced as a virtual laboratory to study aspects of turbulence under strong sta-
bility. The utility of DNS in studying this problem lies in the absence of a turbulence
closure, and it allows to draw conclusions unaffected by assumptions of turbulence
closures or the like. This enables a study of detailed aspects of the collapse of turbu-
lence under strong stratification and yields new insight into long-standing questions
with regard to stable density stratification:

• L+
O , the Obukhov length normalized with an appropriate length scale for the sur-

face layer, is identified as the governing parameters for the occurrence of global
intermittency.

• A method is developed to identify global intermittency, and to condition fields on
its existence.
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• The regulating impact of global intermittency on the velocities, turbulence kinetic
energy and dissipation in the surface layer of a strongly stratified flow is quantified.
Global intermittency is shown to be themainmechanism in reducing the turbulence
intensitywhile the actual level of turbulence inside turbulent patches is not affected.
This is consistentwith the impact of external intermittency in the neutrally stratified
flow: A controversy on the logarithmic law for the mean velocity and associated
constants is shown in this work to result from the neglect of external intermittency
in previous work.

A significant contribution of this dissertation is the solution of the Navier–Stokes
equations in the Boussinesq limit for the particular, physically relevant set of bound-
ary conditions corresponding to Ekman flow. This requires utilization of cutting-edge
computational resources and programming paradigms as laid out in Part II. An algo-
rithm that efficiently overlaps the communication and computation of data is devel-
oped in Chap.4; this algorithm utilizes the supercomputer juqueen efficiently with
up to 256,000 threads. From a fluid mechanics point of view, the solutions of the
Navier–Stokes equations which had not been obtained before for such a large domain
of Ekman flow, is a great value. It allows to study large-scale temporal and spatial
modes in the flow that were not observed before. Another technical innovation of this
dissertation is the dual availability of data at high resolution in both time and space
facilitating a better comparison between field measurement and simulation data.

While the focus of thiswork is the stably stratified boundary layer, new insight also
results into Ekman flow under neutral stratification (Chap.6). I extend the analogy
of Ekman and channel flow beyond mean profiles and identify limitations. In the
surface layer, the turbulence-kinetic energy budget is shown to be very similar to
that of channel flow at similar Reynolds number. External intermittency is found to
be an important mode of large-scale motion in the flow; its occurrence is quantified,
and I show that the impact of external intermittency in the surface layer is significant.
A mean velocity that does not take into account the externally intermittent regions of
the flow is shown to exhibit a logarithmic scaling over a three-times broader range
of heights than the conventional mean.

The relevance of channel flow for the turbulent Ekman layer extends beyond
neutral stratification. The re-laminarization process under very strong stratification
is shown to be governed by surface-layer dynamics. The threshold of critical stability
for the turbulence collapse is—in accordance with recent work on pipe flow and
the study of minimal flow units in channel flow—most appropriately expressed in
terms of an inner scale, namely the Obukhov length L+

O . A consistent study of this
very delicate regime of turbulence is possible in this work due to the absence of a
turbulence closure, since the assumptions underlying turbulence closures employed
in Reynolds-averaged and Large-Eddy simulations of similar set-ups fail in the very
stable regime. Hence, this work is the first to study turbulence in all regimes of static
stability without a break in the underlying paradigms.

The explicit calculation of the turbulence collapse as part of the direct numerical
simulation allows an analysis of the associated mechanisms. I show that global inter-
mittency, i.e. the localized (in space and time) absence of turbulence in rather large

http://dx.doi.org/10.1007/978-3-319-45044-5_4
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regions close to the surface, is a process intrinsic to Ekman flow under the impact of
a stable density stratification: Global intermittency also occurs if the triggers com-
monly assumed a prerequisite (orographic disturbances, solitarywaves, upside-down
boundary layers) are absent. Occurrence of global intermittency is governed by L+

O ,
and global intermittency is observed over the range 200 < L+

O < 800, which is
potentially relevant to the atmospheric boundary layer when the wall unit is replaced
by a roughness length scale.

In the globally intermittent flow, conventional averages are less indicative, and no
method existed to condition a wall-bounded flow on the occurrence of external inter-
mittency. The vorticity-based detection of external intermittency is extended here by
a high-pass filter operation, and this approach is shown to detect global intermittency
also in the vicinity of thewall. Statistics conditioned on the occurrence of global inter-
mittency can now be computed. Such conditioned statistics confirm quantitatively
the visual impression that themorphology of turbulence inside turbulent regions does
not significantly differ from that under neutral stratification. Order-of-one changes in
turbulent quantities under strong stratification are rather governed by a confinement
of the turbulent area fraction than they are by a change of turbulence dynamics inside
turbulent regions of the flow: Turbulent quantities inside the turbulent regions of flow
do not change by more than 20–30%, even under very strong stratification, whereas
the intermittency factor varies between zero and one.

This new understanding of global intermittency has implications for turbulence
models applied under very stable stratification: First, global intermittency effects
could be incorporated into turbulence closures for large-scale models. For this, the
dependency of global intermittency (expressed in terms of the turbulent flow fraction)
on the external parameters (the Richardson and Reynolds numbers) and L+

O needs
to be quantified. Effects of global intermittency might then be consistently incorpo-
rated into turbulence closures without depending strongly on the local details of the
flow such as surface heterogeneities or other forcings previously considered—these
would rather determine the particular place and time of occurrence than the turbulent
area fraction itself. Second, new light is shed on the term ‘weak turbulence’ that is
used recently to describe atmospheric turbulence under strong stratification: While
certainly appropriate in a bulk sense, this work shows that when applied on the level
of individual turbulence elements, the term might be misleading.

This work has embarked on the direct numerical simulation of a stably strati-
fied boundary layer. While the tool of direct numerical simulation dates back to
the 1970s and is well-established to study canonical problems in fluid mechanics,
only recently computers became powerful enough to allow for the simulation of an
external boundary layer at sufficient scale separation to study idealized geophysical
problems. Hence, this approach is relatively new in the geophysical context, and it
was not applied systematically to study problems of the stratified boundary layer
from a meteorological perspective. Despite a low Reynolds number Re = GD/ν
when compared to atmospheric values, many processes and dynamics observed here
do occur in the atmosphere—and even a quantitative comparison with boundary-
layer measurements in terms of the Monin–Obukhov stability correction yields very
good agreement. The reason for this is not only the well-established concept of
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Reynolds-number similarity in a turbulent flow. Also, roughness elements orders of
magnitude larger than the wall unit ν/u� affect the small scales of turbulent motion
in the surface layer over a rough wall. Enhancedmixing in the vicinity of such rough-
ness elements may deem the scale range available for free turbulent motion in the
PBLmuch smaller than what is suggested by commonly assumed Reynolds numbers
around Re = 105 for atmospheric flow.



Epilogue

Neither is the endeavor of completing a dissertation possible without professionally
maintained technical equipment nor without a strong network of mentors, colleagues
and friends. Prima facea, I would like to express my sincere gratitude to my advisor
Juan Pedro Mellado for his enduring support throughout my master and doctoral
studies–for his kind understanding, patient teaching and immense knowledge. His
guidance and support were a pillar of strength in completing this dissertation. Con-
tinuous meetings of the TMP Group under his lead, in particular the comments by
Chiel van Heerwaarden and Alberto de Lozar, were a unique forum and crucial for
the birth and exchange of Ideas.

Besides my advisor, I also thank the committee members: Prof. Martin Claußen,
Prof. Jens Struckmeier and Jun.-Prof. Gualtiero Badin for their involvement in the
evaluation of the dissertation and disputation. My sincere thanks go to the committee
chair Prof. Felix Ament whose unbureaucratic and friendly kind together with his
great commitment turned out to be essential for a timely defense of the dissertation.
I thank Prof. Bas van de Wiel (TU Delft) who was appointed as external referee for
his in-depth revision of the dissertation.

For his enduring support along the work and insightful discussions on the topic I
am indebted toProf. Evgeni Fedorovich at theUniversity ofOklahoma. Iwish to thank
Prof. Jörg Schumacher (TU Ilmenau), Prof. Petra Klein (University of Oklahoma)
and Dmitrii Mironov (Deutscher Wetterdienst) for inspiring discussions.

Florian Ziemen is thanked for the most useful and entertaining distraction I could
think of along working on a dissertation, two Schülerakademien, many more coffees
and evenmore fun–even in themost forlornmoments. Thomas Keitzl was the greatest
companion to do a PhD with and I cannot imagine surviving the years in Hamburg
without his fun and open comments on research and life in general. The Sölden-
Crew was a key to keeping the work-life balance a balance. And Astrid Eichhorn:
Thank you for themusic!Katharina Weinert provided strong support in the beginning
compilation of this work.

© Springer International Publishing AG 2017
C. Ansorge, Analyses of Turbulence in the Neutrally and Stably
Stratified Planetary Boundary Layer, Springer Theses,
DOI 10.1007/978-3-319-45044-5

155



156 Epilogue

I thank my parents who taught me questioning things deeply and supported my
education at all times and Robert Ansorge who was always on the spot. And I thank
Anna who immortally stepped into my life and opened up a new horizon.



Appendix A
Analytical Study of the Inertial Oscillation

The quasi-laminar, stationary Ekman layer. For reference, Ekman’s classical
solution of the laminar case is reproduced, where w = w = 0, and it is extended
here to a temporally evolving case. Assuming the absence of ageostrophic pressure
gradients and turbulent fluxes, the RANS equations in the Boussinesq limit in non-
dimensional form reduce to

∂U

∂t
= V + Re−1 ∂2U

∂z2
(A.1a)

∂V

∂t
= −(U − 1) + Re−1 ∂2V

∂z2
, (A.1b)

whereU and V are non-dimensionalized with the geostrophic wind G, and the length
scale D ≡ √

2ν/ f , such that

Re ≡ G D

ν
=

√
2

G�Ro

ν
(A.1c)

with the Rossby Radius �Ro = G/ f . The Reynolds number Re hence measures the
scale separation between the Rossby radius of deformation and the viscous length
scale D = √

2ν/ f .
The stationary solution of this problem was derived by Ekman in 1905, and in

non-dimensionalized form reads as

(U∞ − 1) = −e−z cos z and V∞ = e−z sin z. (A.1d)

This concept, strictly valid only in a laminar flow, is commonly extended to quasi-
laminar boundary layers where the molecular viscosity is replaced by an eddy-
viscosity νE . If νE (z) = const., the quasi-laminar case discussed by Ekman (1905)
is recovered.

© Springer International Publishing AG 2017
C. Ansorge, Analyses of Turbulence in the Neutrally and Stably
Stratified Planetary Boundary Layer, Springer Theses,
DOI 10.1007/978-3-319-45044-5

157



158 Appendix A: Analytical Study of the Inertial Oscillation

Perturbation of the quasi-laminar system. Once the Ekman solution (A.1d) is
known, one can write any horizontally homogeneous velocity field as V (z, t) =
V∞(z)+ V ′(z, t) and analogously forU (z, t)with (U∞(z), V∞(z)) from Eq. (A.1d).
Applying this decomposition to ξ := U + iV with the imaginary unit i := √−1
leads to the linear PDE

∂ξ ′

∂t
= −iξ ′ + Re−1 ∂2ξ ′

∂z2
. (A.2a)

A non-trivial solution for perturbation of the form of the first derivative of a Gaussian
is

U (t, z) − 1 = −e−z cos z −A0 cos t exp
(
− z2

4τ

)
z

2τ 3/2

V (t, z) = +e−z sin z +A0 sin t exp
(
− z2

4τ

)
z

2τ 3/2

(A.2b)

with τ = t/Re + τ0. A0, τ ∈ R+; A0 defines the strength of the perturbation and τ0
the initial width of the perturbation at. For σ0 > 0 and t → ∞, the first member of
the family of solution approaches the quasi-laminar steady-state solution (U∞, V∞).
Onceσ0 is specified, the levelwhere the perturbationprofile has itsmaximumdepends
on time as zmax/D = √

τ = √
t/Re + τ0. Perturbations propagate upwards and their

magnitude is damped.
Despite its simplicity, this simple and exact analytical model for a quasi-laminar

boundary layer features themain characteristics of inertial oscillations. It ismoreover
relevant for the fully turbulent problem in the sense that if such modes are present,
at least locally, this mechanism will be at work until they become affected by other
processes. Note that by scaling the initial perturbation strength with the parameter
τ0 and eventually by using higher modes, a variety of perturbations exist for which
this mechanism is relevant.
Vertical momentum budget—constraint for the pressure. I turn now to the tur-
bulent problem, and first consider the vertical momentum equation to show that no
horizontal ageostrophic pressure gradients can exist, even in turbulent Ekman flow.
In the general form, the vertical momentum budget of Ekman flow reads as

∂W

∂t
= −∂ww

∂z
− ∂�

∂z
+ 1

Re

∂2W

∂z2
. (A.3a)

Using the symmetries of the problem equation (A.3a) becomes

0 = − ∂ww

∂z
− ∂�

∂z
⇒ �∞ − �0 = 0, (A.3b)

or more general: �(z) = �(0) − ww(z). Hence, there do not exist ageostrophic
pressure gradients in the mean flow at any height if it is statistically homogeneous
in the horizontal directions.
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Integral formulation. Using the fact that the ageostrophic pressure gradients are
zero at any height, and integrating the horizontal momentum budgets vertically, I
obtain

∫ ∞

0
∂t (U − 1)dz −

∫ ∞

0
V dz = − uw|∞0 + 1

Re

∂U

∂z

∣∣∣∣
∞

0

= − 1

Re

∂U

∂z

∣∣∣∣
0

(A.4a)

∫ ∞

0
∂t V dz +

∫ ∞

0
(U − 1)dz = − vw|∞0 + 1

Re

∂V

∂z

∣∣∣∣
∞

0

= − 1

Re

∂V

∂z

∣∣∣∣
0

(A.4b)

For notational convenience, let

U :=
∫ ∞

0
(U − 1)d(z)

V :=
∫ ∞

0
(V )d(z)

u2
	 := 1

Re

√
∂z(U )2 + ∂z(V )2)|0;

tan α := (∂z V |0) / (∂zU |0)
fx := u2

	 cosα

fy := u2
	 sin α

to arrive at the following system describing the inertial oscillator:

∂tU = V − fx and ∂tV = −U − fy (A.4c)

A steady-state solution of this system is given by

U∞ = − fy,∞ = −u2
	,∞ sin α∞ and V∞ = fx,∞ = u2

	,∞ cosα∞. (A.4d)

The perturbed system. It remains unclear, how the perturbed system (A.4c) behaves.
In particular, it is unclear what determines the damping of the inertial oscillation—if
there is any.

Let U = U ′ + U∞ and analogous for V , fx and fy . Using the equilibrium
solution from above, one arrives at a system of ODEs for the perturbations U ′
and V ′.

∂U ′

∂t
= V ′ + f ′

x with f ′
x = u2

	 cosα − u2
	,∞ cosα∞

∂V ′

∂t
= −U ′ + f ′

y with f ′
y = u2

	 sin α − u2
	,∞ sin α∞

(A.4e)
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From this, the two oscillator equations

∂2U ′

∂t2
= −U ′ + f ′

y + ∂ f ′
x

∂t
(A.5a)

∂2V ′

∂t2
= −V ′ − f ′

x + ∂ f ′
y

∂t
. (A.5b)

follow. These equations are an immediate consequence of the Navier–Stokes equa-
tions in the Boussinesq limit, and no further assumptions are necessary for their
derivation.
The oscillator equations under quasi-laminar conditions. I employ now the quasi-
laminar solution to illustrate the role of the terms in the oscillator equation and rule out
the main damping mechanism, at least under quasi-laminar and laminar conditions.
The quantities U ′ and V ′ evaluate to

U ′(t) = − A0√
τ
cos t; V ′(t) = + A0√

τ
sin t, (A.6a)

⇒

⎧⎪⎪⎨
⎪⎪⎩

∂U ′

∂t
= A0

(
sin t√

τ
+ 1

2Re

cos t

τ 3/2

)
;

∂V ′

∂t
= A0

(
cos t√

τ
− 1

2Re

sin t

τ 3/2

) (A.6b)

⇒

⎧⎪⎪⎨
⎪⎪⎩

∂2U ′

∂t2
= A0

(
cos t√

τ
− 1

Re

sin t

τ 3/2
− 3

4Re2
cos t

τ 5/2

)
;

∂2V ′

∂t2
= A0

(
− sin t√

τ
− 1

Re

cos t

τ 3/2
+ 3

4Re2
sin t

τ 5/2

) (A.6c)

where it is reminded that τ = μ0 + t/Re. Other terms of interest are

f ′
x = − A0

2Re

cos t

τ 3/2
⇒ ∂ f ′

x

∂t
= A0

2Re · τ 5/2

(
τ sin t + 3

2Re
cos t

)
(A.6d)

f ′
y = + A0

2Re

sin t

τ 3/2
⇒ ∂ f ′

y

∂t
= A0

2Re · τ 5/2

(
τ cos t − 3

2Re
sin t

)
(A.6e)

One can now write

f ′
y + ∂ f ′

x

∂t
= A0 sin t

Re · τ 3/2
+ 3A0

4Re2τ 5/2
cos t = 1

Re · τ

∂U ′

∂t
+ 1

4Re2τ 5/2
cos t

= 1

Re · τ

∂U ′

∂t
− 1

4Re2τ 2
U ′

f ′
x + ∂ f ′

y

∂t
= A0 cos t

Re · τ 3/2
− 3A0

4Re2τ 5/2
sin t = 1

Re · τ

∂V ′

∂t
− 1

4Re2τ 5/2
sin t

= 1

Re · τ

∂V ′

∂t
− 1

4Re2τ 2
V ′.

(A.6f)
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Hence, the oscillator equations (A.5) can be rewritten as

∂2U ′

∂t2
= −

(
1 + 1

4Re2 · τ 2

)
U ′ + 1

Re · τ

∂U ′

∂t
(A.7a)

∂2V ′

∂t2
= −

(
1 + 1

4Re2 · τ 2

)
V ′ + 1

Re · τ

∂V ′

∂t
. (A.7b)



Appendix B
High-Frequency Oscillation Under Stable
Stratification

Under very stable stratification (RiB = 0.62), a high-frequency oscillation in the
vertical velocity variance, the buoyancy variance and the buoyancy flux is observed.
The transport equations for these quantities are shown in Table B.1.
Second-order closure.Now, simplify above equations which are complete and exact
for a Boussinesq flow to a simple model that explains the main mechanism at work
in the flow under consideration. First, molecular diffusion is small when comapred
to turbulent mixing, and the corresponding terms ν∂zz〈b′b′〉, ν∂zz〈w′b′〉, ν∂zz〈w′w′〉
can be neglected. The triple-correlation terms are parameterized with the following
down-gradient model

∂z〈u′u′w′〉 � u′w′∂zU ∂z〈v′v′w′〉 � v′w′∂z V ∂z〈w′w′w′〉 � 0
∂z〈u′w′w′〉 � w′w′∂zU ∂z〈v′w′w′〉 � w′w′∂z V ∂z〈v′w′w′〉 � u′w′∂zU + v′w′∂z V
∂z〈b′w′b′〉 � 〈b′w′〉N2 ∂z〈w′w′b′〉 � 〈w′w′〉N2

1 where N := √
∂ B/∂z is the Brunt–Väisälä frequency. Dissipation is assumed to

be proportional to the fluctuation intensity of a quantity, i.e.

ν

〈
∂ξ ′

1

∂x j

∂ξ ′
2

∂x j

〉
∝ τξ2ξ2〈ξ ′

1ξ
′
2〉 (B.2)

where τξ1ξ2 is a time scale for the turbulent dissipation of the quantity 〈ξ1ξ2〉. Regard-
ing the Reynolds stresses, let τui u j = τui ui = τε , and the dissipation of buoyancy
variance is parameterized similarly: τbb = τε . For the pressure-strain term, a return-
to-isotropy model can be employed (Rotta 1951). In terms of the scalar, this implies

1An alternative parameterization for the triple correlation in the buoyancy-flux transport equation
would be ∂z〈b′w′w′〉 � 〈b′w′〉∂z W = 0. If this approach is taken, however, the equation for ∂t t 〈w′w′〉
would be structurally different from that for ∂t t 〈b′b′〉 whereas oscillations at identical magnitude
and frequency are observed.
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〈
b′ ∂p′

∂x j

〉
= ∂〈p′b′〉

∂x j
−

〈
p′ ∂b′

∂x j

〉
= 〈u′

j b
′〉

τiso
. (B.3)

With these closure assumptions Equations (B.1) simplify to the following set of
second-order equations (parameterized terms are marked by red font).

1

2

∂〈u′u′〉
∂t

= − 〈u′w′〉∂U

∂z
+ f 〈u′v′〉−〈u′u′〉

τε

+ Rotta (B.4a)

1

2

∂〈v′v′〉
∂t

= − 〈v′w′〉∂V

∂z
− f 〈u′v′〉−〈v′v′〉

τε

+ Rotta (B.4b)

∂〈u′v′〉
∂t

= − 〈u′w′〉∂U

∂z
− 〈v′w′〉∂V

∂z
+ f (〈v′v′〉 − 〈u′u′〉) + 〈u′b′〉−〈u′w′〉

τε
+ Rotta

(B.4c)

∂〈u′w′〉
∂t

= − 〈w′w′〉∂U

∂z
+ f 〈v′w′〉 + 〈u′b′〉−〈u′w′〉

τε
+ Rotta (B.4d)

∂〈v′w′〉
∂t

= − 〈w′w′〉∂V

∂z
− f 〈u′w′〉−〈v′w′〉

τε

+ Rotta (B.4e)

1

2

∂〈w′w′〉
∂t

=〈b′w′〉−〈w′w′〉
τε

+ Rotta (B.4f)

1

2

∂〈b′b′〉
∂t

= − 〈b′w′〉N 2

(
1 + 1

2

)
−〈b′b′〉

τε

(B.4g)

∂〈b′w′〉
∂t

=
[
〈b′b′〉 − 〈w′w′〉N 2

(
1 + 1

2

)]
−〈b′w′〉

(
1

τwb
+ 1

τiso

)
. (B.4h)

This system constitutes a second-order closure for the turbulent flow with down-
gradient closure for the triple correlation, a relaxation time scale for dissipation of
turbulent stress and the Rotta-Model for the pressure–velocity correlation terms. For
time scales small compared with the return-to-isotropy time τiso of the Rotta parame-
terization, the system falls apart into the two independent sub-systems Eqs. (B.4a–
B.4e) and (B.4f–B.4h). The first sub-system is the one containing the horizontal com-
ponents of TKE and the off-diagonal Reynolds stresses. This sub-system is strongly
coupled, not only through the return-to-isotropy termsofRotta’smodel but also due to
the production terms involving the vertical momentum fluxes 〈u′w′〉 and 〈v′w′〉 in the
equation for 〈u′u′〉 and 〈v′v′〉 respectively. The second sub-system is relevant under
stable stratification where it describes the interaction between buoyancy variance
〈b′b′〉, the mean buoyancy gradient N 2 and the vertical velocity perturbations—the
only component of velocity that is directly influenced by stratification.
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Inertia—gravity oscillation.The second sub-system can be understood as a damped
harmonic oscillator when considering the perturbation energy defined as

e :=
(
3

2
N 2〈w′w′〉 + 〈b′b′〉

)
. (B.5)

The above closure equation (B.1) implies dissipation of fluctuations such that energy
decays exponentially as ∂t e = −e/τε . Regarding the buoyancy flux, one can derive
an oscillator equation that reads as

1

2

∂2〈b′w′〉
∂t2

= −1

2

(
5

2
N 2〈b′w′〉

)
+ 1

τε

(
−〈b′b′〉 + 3

2
N 2〈w′w′〉

)
− 1

2

1

τeff

∂〈b′w′〉
∂t
(B.6)

with τ−1
eff = τ−1

wb + τ−1
iso . The term 3/2N 2〈w′w′〉− 〈b′b′〉 can be substituted according

to equation (B.1j) yielding

1

2

∂2〈b′w′〉
∂t2

= − 1

2

(
5

2
N2

)
〈b′w′〉 + 1

τε

(
−2

∂〈b′w′〉
∂t

+ 1

τeff
〈b′w′〉

)
− 1

2

1

τeff

∂〈b′w′〉
∂t

(B.7)

⇒ ∂2〈b′w′〉
∂t2

= − ω2
bw〈b′w′〉 − αbw

∂〈b′w′〉
∂t

withωbw =
√(

5

2
N2 − 2

τeffτε

)
and αbw =

(
1

τeff
− 4

τε

)
(B.8)

In this equation it is required for physical stability that

τeff = τisoτwb

τiso + τwb
<

1

4
τε. (B.9)

Similar oscillator equations can be derived for 〈b′b′〉 and 〈w′w′〉:

1

2

∂2〈w′w′〉
∂t2

=∂〈b′w′〉
∂t

− 1

τε

∂〈w′w′〉
∂t

=〈b′b′〉 − 3

2
N 2〈w′w′〉 − 1

τeff
〈b′w′〉 − 1

τε

∂〈w′w′〉
∂t

(B.10)
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1

2

∂2

∂t2

[
〈w′w′〉 + 2

5N 2
e

]
= − 5

2
N 2

(
〈w′w′〉 + 2

5N 2
e

)
− 〈b′w′〉

τeff

− 1

τε

∂
(〈w′w′〉 + 2/(5N 2)e

)
∂t

(B.11)

1

2

∂2〈b′b′〉
∂t2

= − 3

2
N 2 ∂〈b′w′〉

∂t
− 1

τε

∂〈b′b′〉
∂t

= − 3

2
N 2

[
〈b′b′〉 − 3

2
N 2〈w′w′〉 + 〈b′w′〉

τeff

]
− 1

τε

〈b′b′〉
∂t

= − 5

2
N 2

(
〈b′b′〉 − 2

5N 2
e

)
+ 〈b′w′〉

τeff
− 1

τε

∂〈b′b′〉
∂t

(B.12)

⇒
1

2
σ̈w = −5N 2

2
σw − 1

τε

σ̇w − 〈b′w′〉
τeff

1

2
σ̈b = −5N 2

2
σb − 1

τε

σ̇b + 〈b′w′〉
τeff

(B.13)

where σw = 〈w′w′〉 + 2
5N 2 e and σb = 〈b′b′〉 − 2

5N 2 e.
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